1. Area Suppose that the radius \(r \) and area \(A = \pi r^2 \) of a circle are differentiable functions of \(t \). Write an equation that relates \(dA/dt \) to \(dr/dt \).

2. Surface area Suppose that the radius \(r \) and surface area \(S = 4\pi r^2 \) of a sphere are differentiable functions of \(t \). Write an equation that relates \(dS/dt \) to \(dr/dt \).

3. Volume The radius \(r \) and height \(h \) of a right circular cylinder are related to the cylinder’s volume \(V \) by the formula \(V = \pi r^2 h \).
 a. How is \(dV/dt \) related to \(dh/dt \) if \(r \) is constant?
 b. How is \(dV/dt \) related to \(dr/dt \) if \(h \) is constant?
 c. How is \(dV/dt \) related to \(dr/dt \) and \(dh/dt \) if neither \(r \) nor \(h \) is constant?

4. Volume The radius \(r \) and height \(h \) of a right circular cone are related to the cone’s volume \(V \) by the equation \(V = (1/3)\pi r^2 h \).
 a. How is \(dV/dt \) related to \(dh/dt \) if \(r \) is constant?
 b. How is \(dV/dt \) related to \(dr/dt \) if \(h \) is constant?
 c. How is \(dV/dt \) related to \(dr/dt \) and \(dh/dt \) if neither \(r \) nor \(h \) is constant?

5. Changing voltage The voltage \(V \) (volts), current \(I \) (amperes), and resistance \(R \) (ohms) of an electric circuit like the one shown here are related by the equation \(V = IR \). Suppose that \(V \) is increasing at the rate of 1 volt/sec while \(I \) is decreasing at the rate of 1/3 amp/sec. Let \(t \) denote time in seconds.
 a. What is the value of \(dV/dt \)?
 b. What is the value of \(dI/dt \)?
 c. What equation relates \(dR/dt \) to \(dV/dt \) and \(dI/dt \)?
 d. Find the rate at which \(R \) is changing when \(V = 12 \) volts and \(I = 2 \) amp. Is \(R \) increasing, or decreasing?

6. Electrical power The power \(P \) (watts) of an electric circuit is related to the circuit’s resistance \(R \) (ohms) and current \(I \) (amperes) by the equation \(P = RI^2 \).
 a. How are \(dP/dt \), \(dR/dt \), and \(dI/dt \) related if none of \(P \), \(R \), and \(I \) are constant?
 b. How is \(dR/dt \) related to \(dI/dt \) if \(P \) is constant?

7. Distance Let \(x \) and \(y \) be differentiable functions of \(t \) and let \(s = \sqrt{x^2 + y^2} \) be the distance between the points \((x, 0)\) and \((0, y)\) in the \(xy\)-plane.
 a. How is \(ds/dt \) related to \(dx/dt \) if \(y \) is constant?

8. Diagonals If \(x \), \(y \), and \(z \) are lengths of the edges of a rectangular box, the common length of the box’s diagonals is \(s = \sqrt{x^2 + y^2 + z^2} \).
 a. Assuming that \(x \), \(y \), and \(z \) are differentiable functions of \(t \), how is \(ds/dt \) related to \(dx/dt \), \(dy/dt \), and \(dz/dt \)?
 b. How is \(ds/dt \) related to \(dx/dt \) and \(dz/dt \) if \(x \) is constant?
 c. How are \(dx/dt \), \(dy/dt \), and \(dz/dt \) related if \(s \) is constant?

9. Area The area \(A \) of a triangle with sides of lengths \(a \) and \(b \) enclosing an angle of measure \(\theta \) is
 \[A = \frac{1}{2}ab \sin \theta. \]
 a. How is \(dA/dt \) related to \(d\theta/dt \) if \(a \) and \(b \) are constant?
 b. How is \(dA/dt \) related to \(d\theta/dt \) and \(da/dt \) if only \(b \) is constant?
 c. How is \(dA/dt \) related to \(d\theta/dt \), \(da/dt \), and \(db/dt \) if none of \(a \), \(b \), and \(\theta \) are constant?

10. Heating a plate When a circular plate of metal is heated in an oven, its radius increases at the rate of 0.01 cm/min. At what rate is the plate’s area increasing when the radius is 50 cm?

11. Changing dimensions in a rectangle The length \(l \) of a rectangle is decreasing at the rate of 2 cm/sec while the width \(w \) is increasing at the rate of 2 cm/sec. When \(l = 12 \) cm and \(w = 5 \) cm, find the rates of change of (a) the area, (b) the perimeter, and (c) the lengths of the diagonals of the rectangle. Which of these quantities are decreasing, and which are increasing?

12. Changing dimensions in a rectangular box Suppose that the edge lengths \(x \), \(y \), and \(z \) of a closed rectangular box are changing at the following rates:
 \[\frac{dx}{dt} = 1 \text{ m/sec}, \quad \frac{dy}{dt} = -2 \text{ m/sec}, \quad \frac{dz}{dt} = 1 \text{ m/sec}. \]
 Find the rates at which the box’s (a) volume, (b) surface area, and (c) diagonal length \(s = \sqrt{x^2 + y^2 + z^2} \) are changing at the instant when \(x = 4 \), \(y = 3 \), and \(z = 2 \).

13. A sliding ladder A 13-ft ladder is leaning against a house when its base starts to slide away. By the time the base is 12 ft from the house, the base is moving at the rate of 5 ft/sec.
 a. How fast is the top of the ladder sliding down the wall then?
 b. At what rate is the area of the triangle formed by the ladder, wall, and ground changing then?
 c. At what rate is the angle \(\theta \) between the ladder and the ground changing then?
14. Commercial air traffic Two commercial airplanes are flying at 40,000 ft along straight-line courses that intersect at right angles. Plane A is approaching the intersection point at a speed of 442 knots (nautical miles per hour; a nautical mile is 2000 yd). Plane B is approaching the intersection at 481 knots. At what rate is the distance between the planes changing when A is 5 nautical miles from the intersection point and B is 12 nautical miles from the intersection point?

15. Flying a kite A girl flies a kite at a height of 300 ft, the wind carrying the kite horizontally away from her at a rate of 25 ft/sec. How fast must she let out the string when the kite is 500 ft away from her?

16. Boring a cylinder The mechanics at Lincoln Automotive are reboring a 6-in.-deep cylinder to fit a new piston. The machine they are using increases the cylinder's radius one-thousandth of an inch every 3 min. How rapidly is the cylinder volume increasing when the bore (diameter) is 3.800 in.?

17. A growing sand pile Sand falls from a conveyor belt at the rate of 10 m³/min onto the top of a conical pile. The height of the pile is always three-eighths of the base diameter. How fast are the (a) height and (b) radius changing when the pile is 4 m high? Answer in centimeters per minute.

18. A draining conical reservoir Water is flowing at the rate of 50 m³/min from a shallow concrete conical reservoir (vertex down) of base radius 45 m and height 6 m.
 a. How fast (centimeters per minute) is the water level falling when the water is 5 m deep?
 b. How fast is the radius of the water's surface changing then? Answer in centimeters per minute.

19. A draining hemispherical reservoir Water is flowing at the rate of 6 m³/min from a reservoir shaped like a hemispherical bowl of radius 13 m, shown here in profile. Answer the following questions, given that the volume of water in a hemispherical bowl of radius R is $V = \frac{2}{3}\pi R^2(3R - y)$ when the water is y meters deep.

20. A growing raindrop Suppose that a drop of mist is a perfect sphere and that, through condensation, the drop picks up moisture at a rate proportional to its surface area. Show that under these circumstances the drop's radius increases at a constant rate.

21. The radius of an inflating balloon A spherical balloon is inflated with helium at the rate of 100π ft³/min. How fast is the balloon's radius increasing at the instant the radius is 5 ft? How fast is the surface area increasing?

22. Hauling in a dinghy A dinghy is pulled toward a dock by a rope from the bow through a ring on the dock 6 ft above the bow. The rope is hauled in at the rate of 2 ft/sec.
 a. How fast is the boat approaching the dock when 10 ft of rope are out?
 b. At what rate is the angle θ changing then (see the figure)?

23. A balloon and a bicycle A balloon is rising vertically above a level, straight road at a constant rate of 1 ft/sec. Just when the balloon is 65 ft above the ground, a bicycle moving at a constant rate of 17 ft/sec passes under it. How fast is the distance $s(t)$ between the bicycle and balloon increasing 3 sec later?
24. **Making coffee** Coffee is draining from a conical filter into a cylindrical coffeepot at the rate of 10 in³/min.

 a. How fast is the level in the pot rising when the coffee in the cone is 5 in. deep?

 b. How fast is the level in the cone falling then?

 ![Diagram of coffee draining into a coffeepot and a cone]

25. **Cardiac output** In the late 1860s, Adolf Fick, a professor of physiology in the Faculty of Medicine in Würzburg, Germany, developed one of the methods we use today for measuring how much blood your heart pumps in a minute. Your cardiac output as you read this sentence is probably about 7 L/min. At rest it is likely to be a bit under 6 L/min. If you are a trained marathon runner running a marathon, your cardiac output can be as high as 30 L/min.

 Your cardiac output can be calculated with the formula

 \[y = \frac{Q}{D}, \]

 where \(Q \) is the number of milliliters of CO₂ you exhale in a minute and \(D \) is the difference between the CO₂ concentration (ml/L) in the blood pumped to the lungs and the CO₂ concentration in the blood returning from the lungs. With \(Q = 233 \text{ ml/min and } D = 97 - 56 = 41 \text{ ml/L}, \)

 \[y = \frac{233 \text{ ml/min}}{41 \text{ ml/L}} \approx 5.68 \text{ L/min,} \]

 fairly close to the 6 L/min that most people have at basal (resting) conditions. (Data courtesy of J. Kenneth Herd, M.D., Quillan College of Medicine, East Tennessee State University.)

 Suppose that when \(Q = 233 \text{ and } D = 41, \) we also know that \(D \) is decreasing at the rate of 2 units a minute but that \(Q \) remains unchanged. What is happening to the cardiac output?

26. **Cost, revenue, and profit** A company can manufacture \(x \) items at a cost of \(c(x) \) thousand dollars, a sales revenue of \(r(x) \) thousand dollars, and a profit of \(p(x) = r(x) - c(x) \) thousand dollars. Find \(dc/dt, dr/dt, \) and \(dp/dt \) for the following values of \(x \) and \(dx/dt. \)

 a. \(r(x) = 9x, \ c(x) = x^3 - 6x^2 + 15x, \) and \(dx/dt = 0.1 \) when \(x = 2 \)

 b. \(r(x) = 70x, \ c(x) = x^3 - 6x^2 + 45/x, \) and \(dx/dt = 0.05 \) when \(x = 1.5 \)

27. **Moving along a parabola** A particle moves along the parabola \(y = x^2 \) in the first quadrant in such a way that its \(x \)-coordinate (measured in meters) increases at a steady 10 m/sec. How fast is the angle of inclination \(\theta \) of the line joining the particle to the origin changing when \(x = 3 \) m?

28. **Moving along another parabola** A particle moves from right to left along the parabolic curve \(y = \sqrt{-x} \) in such a way that its \(x \)-coordinate (measured in meters) decreases at the rate of 8 m/sec. How fast is the angle of inclination \(\theta \) of the line joining the particle to the origin changing when \(x = -4 \)?

29. **Motion in the plane** The coordinates of a particle in the metric \(xy \)-plane are differentiable functions of time \(t \) with \(dx/dt = -1 \text{ m/sec and } dy/dt = -5 \text{ m/sec}. \) How fast is the particle’s distance from the origin changing as it passes through the point \((5, 12)\)?

30. **A moving shadow** A man 6 ft tall walks at the rate of 5 ft/sec toward a streetlight that is 16 ft above the ground. At what rate is the tip of his shadow moving? At what rate is the length of his shadow changing when he is 10 ft from the base of the light?

31. **Another moving shadow** A light shines from the top of a pole 50 ft high. A ball is dropped from the same height from a point 30 ft away from the light. (See accompanying figure.) How fast is the shadow of the ball moving along the ground 1/2 sec later? (Assume the ball falls a distance \(s = 16t^2 \text{ ft in } t \text{ sec.} \)

32. **Videotaping a moving car** You are videotaping a race from a stand 132 ft from the track, following a car that is moving at 180 mi/h (264 ft/sec). How fast will your camera angle \(\theta \) be changing when the car is right in front of you? A half second later?
33. **A melting ice layer** A spherical iron ball 8 in. in diameter is coated with a layer of ice of uniform thickness. If the ice melts at the rate of \(10 \text{ in}^3/\text{min}\), how fast is the thickness of the ice decreasing when it is 2 in. thick? How fast is the outer surface area of ice decreasing?

34. **Highway patrol** A highway patrol plane flies 3 mi above a level, straight road at a steady 120 mi/h. The pilot sees an oncoming car and with radar determines that at the instant the line-of-sight distance from plane to car is 5 mi, the line-of-sight distance is decreasing at the rate of 160 mi/h. Find the car’s speed along the highway.

35. **A building’s shadow** On a morning of a day when the sun will pass directly overhead, the shadow of an 80-ft building on level ground is 60 ft long. At the moment in question, the angle \(\theta\) the sun makes with the ground is increasing at the rate of \(0.27^\circ/\text{min}\). At what rate is the shadow decreasing? (Remember to use radians. Express your answer in inches per minute, to the nearest tenth.)

36. **Walkers** \(A\) and \(B\) are walking on straight streets that meet at right angles. \(A\) approaches the intersection at 2 m/sec; \(B\) moves away from the intersection 1 m/sec. At what rate is the angle \(\theta\) changing when \(A\) is 10 m from the intersection and \(B\) is 20 m from the intersection? Express your answer in degrees per second to the nearest degree.

37. **Baseball players** A baseball diamond is a square 90 ft on a side. A player runs from first base to second at a rate of 16 ft/sec.
 a. At what rate is the player’s distance from third base changing when the player is 30 ft from first base?
 b. At what rates are angles \(\theta_1\) and \(\theta_2\) (see the figure) changing at that time?
 c. The player slides into second base at the rate of 15 ft/sec. At what rates are angles \(\theta_1\) and \(\theta_2\) changing as the player touches base?

38. **Ships** Two ships are steaming straight away from a point \(O\) along routes that make a 120° angle. Ship \(A\) moves at 14 knots (nautical miles per hour; a nautical mile is 2000 yd). Ship \(B\) moves at 21 knots. How fast are the ships moving apart when \(OA = 5\) and \(OB = 3\) nautical miles?