Chapter 6: Applications of Definite Integrals

EXERCISES 6.5

Finding Integrals for Surface Area

In Exercises 1–8:

a. Set up an integral for the area of the surface generated by revolving the given curve about the indicated axis.

b. Graph the curve to see what it looks like. If you can, graph the surface, too.

c. Use your grapher’s or computer’s integral evaluator to find the surface’s area numerically.

1. \(y = \tan x, \ 0 \leq x \leq \pi/4; \ x\)-axis

2. \(y = x^2, \ 0 \leq x \leq 2; \ x\)-axis

3. \(xy = 1, \ 1 \leq y \leq 2; \ y\)-axis

4. \(x = \sin y, \ 0 \leq y \leq \pi; \ y\)-axis

5. \(x^{1/2} + y^{1/2} = 3 \) from \((4,1)\) to \((1,4)\); \ x-axis

6. \(y + 2\sqrt{y} = x, \ 1 \leq y \leq 2; \ y\)-axis

7. \(x = \int_0^y \tan t \, dt, \ 0 \leq y \leq \pi/3; \ y\)-axis

8. \(y = \int_1^x \sqrt{t^2 - 1} \, dt, \ 1 \leq x \leq \sqrt{5}; \ x\)-axis

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley
Finding Surface Areas

9. Find the lateral (side) surface area of the cone generated by revolving the line segment \(y = x/2, \ 0 \leq x \leq 4 \), about the \(x \)-axis. Check your answer with the geometry formula.

Lateral surface area = \(\frac{1}{2} \times \text{base circumference} \times \text{slant height} \).

10. Find the lateral surface area of the cone generated by revolving the line segment \(y = x/2, \ 0 \leq x \leq 4 \) about the \(y \)-axis. Check your answer with the geometry formula.

Lateral surface area = \(\frac{1}{2} \times \text{base circumference} \times \text{slant height} \).

11. Find the surface area of the cone frustum generated by revolving the line segment \(y = (x/2) + (1/2), \ 1 \leq x \leq 3 \), about the \(x \)-axis. Check your result with the geometry formula.

Frustum surface area = \(\pi (r_1 + r_2) \times \text{slant height} \).

12. Find the surface area of the cone frustum generated by revolving the line segment \(y = (x/2) + (1/2), \ 1 \leq x \leq 3 \), about the \(y \)-axis. Check your result with the geometry formula.

Frustum surface area = \(\pi (r_1 + r_2) \times \text{slant height} \).

Find the areas of the surfaces generated by revolving the curves in Exercises 13–22 about the indicated axes. If you have a grapher, you may want to graph these curves to see what they look like.

13. \(y = x^{3/9}, \ 0 \leq x \leq 2; \ \text{x-axis} \)
14. \(y = \sqrt{x}, \ 3/4 \leq x \leq 15/4; \ \text{x-axis} \)
15. \(y = \sqrt{2x - x^2}, \ 0.5 \leq x \leq 1.5; \ \text{x-axis} \)
16. \(y = \sqrt{x + 1}, \ 1 \leq x \leq 5; \ \text{x-axis} \)
17. \(x = y^{3/2}, \ 0 \leq y \leq 1; \ \text{y-axis} \)
18. \(x = (1/3)y^{3/2} - y^{1/2}, \ 1 \leq y \leq 3; \ \text{y-axis} \)
19. \(x = 2\sqrt{4 - y}, \ 0 \leq y \leq 15/4; \ \text{y-axis} \)

20. \(x = \sqrt{2y - 1}, \ 5/8 \leq y \leq 1; \ \text{y-axis} \)

21. \(x = (y^2/4) + 1/(8y^2), \ 1 \leq y \leq 2; \ \text{x-axis} \) (Hint: Express \(ds = \sqrt{dx^2 + dy^2} \) in terms of \(dy \), and evaluate the integral \(S = \int 2\pi y \ ds \) with appropriate limits.)

22. \(y = (1/3)(x^2 + 2)^{1/2}, \ 0 \leq x \leq \sqrt{2}; \ \text{y-axis} \) (Hint: Express \(ds = \sqrt{dx^2 + dy^2} \) in terms of \(dx \), and evaluate the integral \(S = \int 2\pi x \ ds \) with appropriate limits.)

23. Testing the new definition Show that the surface area of a sphere of radius \(a \) is still \(4\pi a^2 \) by using Equation (3) to find the area of the surface generated by revolving the curve \(y = \sqrt{a^2 - x^2}, -a \leq x \leq a \), about the \(x \)-axis.

24. Testing the new definition The lateral (side) surface area of a cone of height \(h \) and base radius \(r \) should be \(\pi r \sqrt{r^2 + h^2} \), the semiperimeter of the base times the slant height. Show that this is still the case by finding the area of the surface generated by revolving the line segment \(y = (r/h)x, 0 \leq x \leq h \), about the \(x \)-axis.

25. Write an integral for the area of the surface generated by revolving the curve \(y = \cos x, -\pi/2 \leq x \leq \pi/2 \), about the \(x \)-axis. In Section 8.5 we will see how to evaluate such integrals.

26. The surface of an astroid Find the area of the surface generated by revolving about the \(x \)-axis the portion of the astroid \(x^{2/3} + y^{2/3} = 1 \) shown here. (Hint: Revolve the first-quadrant portion \(y = (1 - x^{2/3})^{3/2}, 0 \leq x \leq 1 \), about the \(x \)-axis and double your result.)

27. Enameling woks Your company decided to put out a deluxe version of the successful wok you designed in Section 6.1, Exercise 55.

The plan is to coat it inside with white enamel and outside with blue enamel. Each enamel will be sprayed on 0.5 mm thick before baking. (See diagram here.) Your manufacturing department wants to know how much enamel to have on hand for a production run of 5000 woks. What do you tell them? (Neglect waste and unused material and give your answer in liters. Remember that 1 cm³ = 1 mL, so 1 L = 1000 cm³.)
28. **Slicing bread** Did you know that if you cut a spherical loaf of bread into slices of equal width, each slice will have the same amount of crust? To see why, suppose the semicircle \(y = \sqrt{r^2 - x^2} \) shown here is revolved about the \(x \)-axis to generate a sphere. Let \(AB \) be an arc of the semicircle that lies above an interval of length \(h \) on the \(x \)-axis. Show that the area swept out by \(AB \) does not depend on the location of the interval. (It does depend on the length of the interval.)

\[
y = \sqrt{r^2 - x^2}
\]

![Diagram](image)

29. The shaded band shown here is cut from a sphere of radius \(R \) by parallel planes \(h \) units apart. Show that the surface area of the band is \(2\pi Rh \).

30. Here is a schematic drawing of the 90-ft dome used by the U.S. National Weather Service to house radar in Bozeman, Montana.

 a. How much outside surface is there to paint (not counting the bottom)?

 b. Express the answer to the nearest square foot.

31. **Surfaces generated by curves that cross the axis of revolution** The surface area formula in Equation (3) was developed under the assumption that the function \(f \) whose graph generated the surface was nonnegative over the interval \([a, b]\). For curves that cross the axis of revolution, we replace Equation (3) with the absolute value formula

\[
S = \int 2\pi |f(x)| \, ds.
\]

Use Equation (13) to find the surface area of the double cone generated by revolving the line segment \(y = x, -1 \leq x \leq 2 \), about the \(x \)-axis.

32. (Continuation of Exercise 31.) Find the area of the surface generated by revolving the curve \(y = x^{3/2}, -\sqrt{3} \leq x \leq \sqrt{3} \), about the \(x \)-axis. What do you think will happen if you drop the absolute value bars from Equation (13) and attempt to find the surface area with the formula \(S = \int 2\pi f(x) \, ds \) instead? Try it.

Parametrizations

Find the areas of the surfaces generated by revolving the curves in Exercises 33–35 about the indicated axes.

33. \(x = \cos t, \ y = 2 + \sin t, \ 0 \leq t \leq 2\pi; \ x \text{-axis} \)

34. \(x = (2/3)t^{3/2}, \ y = 2\sqrt{t}, \ 0 \leq t \leq 3; \ y \text{-axis} \)

35. \(x = t + \sqrt{2}, \ y = (t^2/2) + \sqrt{2t} - \sqrt{2} \leq t \leq \sqrt{2}; \ y \text{-axis} \)

36. Set up, but do not evaluate, an integral that represents the area of the surface obtained by rotating the curve \(x = a(1 - \cos t), \ y = a(1 - \sin t), \ 0 \leq t \leq 2\pi \), about the \(x \)-axis.

37. **A cone frustum** The line segment joining the points \((0, 1)\) and \((2, 2)\) is revolved about the \(x \)-axis to generate a frustum of a cone. Find the surface area of the frustum using the parametrization \(x = 2t, y = t + 1, \ 0 \leq t \leq 1 \). Check your result with the geometry formula: Area = \(\pi(r_1 + r_2)(\text{slant height}) \).

38. **A cone** The line segment joining the origin to the point \((h, r)\) is revolved about the \(x \)-axis to generate a cone of height \(h \) and base radius \(r \). Find the cone’s surface area with the parametric equations \(x = ht, y = rt, 0 \leq t \leq 1 \). Check your result with the geometry formula: Area = \(\pi r(\text{slant height}) \).

39. **An alternative derivation of the surface area formula** Assume \(f \) is smooth on \([a, b]\) and partition \([a, b]\) in the usual way. In the \(k \)-th subinterval \([x_{k-1}, x_k]\) construct the tangent line to the curve at the midpoint \(m_k = (x_{k-1} + x_k)/2 \), as in the figure here.

 a. Show that \(r_1 = f(m_k) - f'(m_k)\frac{\Delta x_k}{2} \) and \(r_2 = f(m_k) + f'(m_k)\frac{\Delta x_k}{2} \).

 b. Show that the length \(L_k \) of the tangent line segment in the \(k \)-th subinterval is \(L_k = \sqrt{\Delta x_k^2 + (f'(m_k)\Delta x_k)^2} \).
c. Show that the lateral surface area of the frustum of the cone swept out by the tangent line segment as it revolves about the x-axis is $2\pi f(m_k)\sqrt{1 + (f'(m_k))^2} \Delta x_k$.

d. Show that the area of the surface generated by revolving $y = f(x)$ about the x-axis over $[a, b]$ is

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\text{lateral surface area of } k\text{th frustum} \right) = \int_{a}^{b} 2\pi f(x)\sqrt{1 + (f'(x))^2} \, dx.$$

40. **Modeling surface area** The lateral surface area of the cone swept out by revolving the line segment $y = x/\sqrt{3}, 0 \leq x \leq \sqrt{3}$, about the x-axis should be $(1/2)(\text{base circumference})(\text{slant height}) = (1/2)(2\pi)(2) = 2\pi$. What do you get if you use Equation (8)?

41. **The Theorems of Pappus**

41. The square region with vertices $(0, 2), (2, 0), (4, 2)$, and $(2, 4)$ is revolved about the x-axis to generate a solid. Find the volume and surface area of the solid.

42. Use a theorem of Pappus to find the volume generated by revolving about the line $x = 5$ the triangular region bounded by the coordinate axes and the line $2x + y = 6$. (As you saw in Exercise 29 of Section 6.4, the centroid of a triangle lies at the intersection of the medians, one-third of the way from the midpoint of each side toward the opposite vertex.)

43. Find the volume of the torus generated by revolving the circle $(x - 2)^2 + y^2 = 1$ about the y-axis.

44. Use the theorems of Pappus to find the lateral surface area and volume of a right circular cone.

45. Use the Second Theorem of Pappus and the fact that the surface area of a sphere of radius a is $4\pi a^2$ to find the centroid of the semicircle $y = \sqrt{a^2 - x^2}$.

46. As found in Exercise 45, the centroid of the semicircle $y = \sqrt{a^2 - x^2}$ lies at the point $(0, 2a/\pi)$. Find the area of the surface swept out by revolving the semicircle about the line $y = a$.

47. The area of the region R enclosed by the semiellipse $y = (b/a)\sqrt{a^2 - x^2}$ and the x-axis is $(1/2)\pi ab$ and the volume of the ellipsoid generated by revolving R about the x-axis is $(4/3)\pi ab^2$. Find the centroid of R. Notice that the location is independent of a.

48. As found in Example 6, the centroid of the region enclosed by the x-axis and the semicircle $y = \sqrt{a^2 - x^2}$ lies at the point $(0, 4a/3\pi)$. Find the volume of the solid generated by revolving this region about the line $y = -a$.

49. The region of Exercise 48 is revolved about the line $y = x - a$ to generate a solid. Find the volume of the solid.

50. As found in Exercise 45, the centroid of the semicircle $y = \sqrt{a^2 - x^2}$ lies at the point $(0, 2a/\pi)$. Find the area of the surface generated by revolving the semicircle about the line $y = x - a$.

51. Find the moment about the x-axis of the semicircular region in Example 6. If you use results already known, you will not need to integrate.