EXERCISES 9.2

First-Order Linear Equations

Solve the differential equations in Exercises 1–14.

1. $\frac{dy}{dx} + y = e^x$, $x > 0$
2. $e^x \frac{dy}{dx} + 2e^x y = 1$
3. $xy' + 3y = \frac{\sin x}{x^2}$, $x > 0$
4. $y' + (\tan x)y = \cos^2 x$, $-\pi/2 < x < \pi/2$
5. $x \frac{dy}{dx} + 2y = 1 - \frac{1}{x}$, $x > 0$
6. $(1 + x)y' + y = \sqrt{x}$
7. $2y' = e^{x^2} + y$
8. $e^{2x} y' + 2e^{2x} y = 2x$
9. $xy' - y = 2x \ln x$
10. $x \frac{dy}{dx} = \frac{\cos x}{x} - 2y$, $x > 0$
11. $(t - 1)^3 \frac{ds}{dt} + 4(t - 1)^3 s = t + 1$, $t > 1$
Solving Initial Value Problems

Solve the initial value problems in Exercises 15–20.

15. \(\frac{dy}{dt} + 2y = 3, \quad y(0) = 1 \)
16. \(t \frac{dy}{dt} + 2y = t^3, \quad t > 0, \quad y(2) = 1 \)
17. \(\frac{\theta}{d\theta} + y = \sin \theta, \quad \theta > 0, \quad y(\pi/2) = 1 \)
18. \(\frac{\theta}{d\theta} - 2y = \theta^3 \sec \theta \tan \theta, \quad \theta > 0, \quad y(\pi/3) = 2 \)
19. \((x + 1) \frac{dy}{dx} - 2(x^2 + x)y = e^{x^2}/x + 1, \quad x > -1, \quad y(0) = 5 \)
20. \(\frac{dy}{dx} + xy = x, \quad y(0) = -6 \)

21. Solve the exponential growth/decay initial value problem for \(y \) as a function of \(t \) thinking of the differential equation as a first-order linear equation with \(P(x) = -k \) and \(Q(x) = 0 \):

\[
\frac{dy}{dt} = ky \quad (k \text{ constant}), \quad y(0) = y_0
\]

22. Solve the following initial value problem for \(u \) as a function of \(t \):

\[
\frac{du}{dt} + \frac{k}{m} u = 0 \quad (k \text{ and } m \text{ positive constants}), \quad u(0) = u_0
\]

a. as a first-order linear equation.

b. as a separable equation.

Theory and Examples

23. Is either of the following equations correct? Give reasons for your answers.

a. \(x \int \frac{1}{x} dx = x \ln |x| + C \)

b. \(x \int \frac{1}{x} dx = x \ln |x| + Cx \)

24. Is either of the following equations correct? Give reasons for your answers.

a. \(\frac{1}{\cos x} \int \cos x \, dx = \tan x + C \)

b. \(\frac{1}{\cos x} \int \cos x \, dx = \tan x + C / \cos x \)

25. Salt mixture A tank initially contains 100 gal of brine in which 50 lb of salt are dissolved. A brine containing 2 lb/gal of salt runs into the tank at the rate of 5 gal/min. The mixture is kept uniform by stirring and flows out of the tank at the rate of 4 gal/min.

a. At what rate (pounds per minute) does salt enter the tank at time \(t \)?

b. What is the volume of brine in the tank at time \(t \)?

c. At what rate (pounds per minute) does salt leave the tank at time \(t \)?

d. Write down and solve the initial value problem describing the mixing process.

e. Find the concentration of salt in the tank 25 min after the process starts.

26. Mixture problem A 200-gal tank is half full of distilled water. At time \(t = 0 \), a solution containing 0.5 lb/gal of concentrate enters the tank at the rate of 5 gal/min, and the well-stirred mixture is withdrawn at the rate of 3 gal/min.

a. At what time will the tank be full?

b. At the time the tank is full, how many pounds of concentrate will it contain?

27. Fertilizer mixture A tank contains 100 gal of fresh water. A solution containing 1 lb/gal of soluble lawn fertilizer runs into the tank at the rate of 1 gal/min, and the mixture is pumped out of the tank at the rate of 3 gal/min. Find the maximum amount of fertilizer in the tank and the time required to reach the maximum.

28. Carbon monoxide pollution An executive conference room of a corporation contains 4500 ft\(^3\) of air initially free of carbon monoxide. Starting at time \(t = 0 \), cigarette smoke containing 4% carbon monoxide is blown into the room at the rate of 0.3 ft\(^3\)/min. A ceiling fan keeps the air in the room well circulated and the air leaves the room at the same rate of 0.3 ft\(^3\)/min. Find the time when the concentration of carbon monoxide in the room reaches 0.01%.

29. Current in a closed RL circuit How many seconds after the switch in an RL circuit is closed will it take the current \(i \) to reach half of its steady state value? Notice that the time depends on \(R \) and \(L \) and not on how much voltage is applied.

30. Current in an open RL circuit If the switch is thrown open after the current in an RL circuit has built up to its steady-state value \(I = V/R \), the decaying current (graphed here) obeys the equation

\[
L \frac{di}{dt} + Ri = 0,
\]

which is Equation (5) with \(V = 0 \).

a. Solve the equation to express \(i \) as a function of \(t \).

b. How long after the switch is thrown will it take the current to fall to half its original value?

c. Show that the value of the current when \(t = L/R \) is \(I/e \). (The significance of this time is explained in the next exercise.)
31. **Time constants**
Engineers call the number L/R the *time constant* of the RL circuit in Figure 9.6. The significance of the time constant is that the current will reach 95% of its final value within 3 time constants of the time the switch is closed (Figure 9.6). Thus, the time constant gives a built-in measure of how rapidly an individual circuit will reach equilibrium.

a. Find the value of i in Equation (7) that corresponds to $t = 3L/R$ and show that it is about 95% of the steady-state value $I = V/R$.

b. Approximately what percentage of the steady-state current will be flowing in the circuit 2 time constants after the switch is closed (i.e., when $t = 2L/R$)?

32. **Derivation of Equation (7) in Example 5**

a. Show that the solution of the equation
\[
\frac{di}{dt} + \frac{R}{L}i = \frac{V}{L}
\]
is
\[
i = \frac{V}{R} + Ce^{-(R/L)t}.
\]

b. Then use the initial condition $i(0) = 0$ to determine the value of C. This will complete the derivation of Equation (7).

c. Show that $i = V/R$ is a solution of Equation (6) and that $i = Ce^{-(R/L)t}$ satisfies the equation
\[
\frac{di}{dt} + \frac{R}{L}i = 0.
\]

HISTORICAL BIOGRAPHY

James Bernoulli
(1654–1705)

A **Bernoulli differential equation** is of the form
\[
\frac{dy}{dx} + P(x)y = Q(x)y^n.
\]

Observe that, if $n = 0$ or 1, the Bernoulli equation is linear. For other values of n, the substitution $u = y^{1-n}$ transforms the Bernoulli equation into the linear equation
\[
\frac{du}{dx} + (1-n)P(x)u = (1-n)Q(x).
\]

For example, in the equation
\[
\frac{dy}{dx} - y = e^{-x}y^2
\]
we have $n = 2$, so that $u = y^{1-2} = y^{-1}$ and $du/dx = -y^{-2}dy/dx$. Then $dy/dx = -y^2 du/dx = -u^2 du/dx$. Substitution into the original equation gives
\[
-u^{-2} \frac{du}{dx} - u^{-1} = e^{-x}u^{-2}
\]
or, equivalently,
\[
\frac{du}{dx} + u = -e^{-x}.
\]

This last equation is linear in the (unknown) dependent variable u.

Solve the differential equations in Exercises 33–36.

33. $y' - y = -y^2$
34. $y' - y = xy^2$
35. $xy' + y = y^{-2}$
36. $x^2y' + 2xy = y^3$