9.4 Graphical Solutions of Autonomous Differential Equations

In Chapter 4 we learned that the sign of the first derivative tells where the graph of a function is increasing and where it is decreasing. The sign of the second derivative tells the concavity of the graph. We can build on our knowledge of how derivatives determine the shape of a graph to solve differential equations graphically. The starting ideas for doing so are the notions of phase line and equilibrium value. We arrive at these notions by investigating what happens when the derivative of a differentiable function is zero from a point of view different from that studied in Chapter 4.

Equilibrium Values and Phase Lines

When we differentiate implicitly the equation

\[
\frac{1}{5} \ln (5y - 15) = x + 1
\]

we obtain

\[
\frac{1}{5} \left(\frac{5}{5y - 15} \right) \frac{dy}{dx} = 1.
\]

Solving for \(y' = dy/dx \) we find \(y' = 5y - 15 = 5(y - 3) \). In this case the derivative \(y' \) is a function of \(y \) only (the dependent variable) and is zero when \(y = 3 \).

A differential equation for which \(dy/dx \) is a function of \(y \) only is called an autonomous differential equation. Let’s investigate what happens when the derivative in an autonomous equation equals zero.

DEFINITION

Equilibrium Values

If \(dy/dx = g(y) \) is an autonomous differential equation, then the values of \(y \) for which \(dy/dx = 0 \) are called **equilibrium values** or **rest points**.
Chapter 9: Further Applications of Integration

Thus, equilibrium values are those at which no change occurs in the dependent variable, so \(y \) is at rest. The emphasis is on the value of \(y \) where \(\frac{dy}{dx} = 0 \), not the value of \(x \), as we studied in Chapter 4.

EXAMPLE 1 Finding Equilibrium Values

The equilibrium values for the autonomous differential equation

\[
\frac{dy}{dx} = (y + 1)(y - 2)
\]

are \(y = -1 \) and \(y = 2 \).

To construct a graphical solution to an autonomous differential equation like the one in Example 1, we first make a phase line for the equation, a plot on the \(y \)-axis that shows the equation’s equilibrium values along with the intervals where \(\frac{dy}{dx} \) and \(\frac{d^2y}{dx^2} \) are positive and negative. Then we know where the solutions are increasing and decreasing, and the concavity of the solution curves. These are the essential features we found in Section 4.4, so we can determine the shapes of the solution curves without having to find formulas for them.

EXAMPLE 2 Drawing a Phase Line and Sketching Solution Curves

Draw a phase line for the equation

\[
\frac{dy}{dx} = (y + 1)(y - 2)
\]

and use it to sketch solutions to the equation.

Solution

1. *Draw a number line for \(y \) and mark the equilibrium values \(y = -1 \) and \(y = 2 \), where \(\frac{dy}{dx} = 0 \).*

 \[
 \begin{array}{c}
 y \\
 \hline
 -1 \quad 2 \quad y
 \end{array}
 \]

2. *Identify and label the intervals where \(y' > 0 \) and \(y' < 0 \). This step resembles what we did in Section 4.3, only now we are marking the \(y \)-axis instead of the \(x \)-axis.*

 \[
 \begin{array}{c}
 y \\
 \hline
 -1 \quad \quad 2 \quad \quad y
 \end{array}
 \]

 \[
 \begin{array}{c}
 y' > 0 \quad \quad y' < 0 \quad \quad y' > 0
 \end{array}
 \]

 We can encapsulate the information about the sign of \(y' \) on the phase line itself. Since \(y' > 0 \) on the interval to the left of \(y = -1 \), a solution of the differential equation with a \(y \)-value less than \(-1 \) will increase from there toward \(y = -1 \). We display this information by drawing an arrow on the interval pointing to \(-1 \).

 \[
 \begin{array}{c}
 y \\
 \hline
 -1 \quad \quad 2 \quad \quad y
 \end{array}
 \]

 Similarly, \(y' < 0 \) between \(y = -1 \) and \(y = 2 \), so any solution with a value in this interval will decrease toward \(y = -1 \).
For \(y > 2 \), we have \(y' > 0 \), so a solution with a \(y \)-value greater than 2 will increase from there without bound.

In short, solution curves below the horizontal line \(y = -1 \) in the \(xy \)-plane rise toward \(y = -1 \). Solution curves between the lines \(y = -1 \) and \(y = 2 \) fall away from \(y = 2 \) toward \(y = -1 \). Solution curves above \(y = 2 \) rise away from \(y = 2 \) and keep going up.

3. Calculate \(y'' \) and mark the intervals where \(y'' > 0 \) and \(y'' < 0 \). To find \(y'' \), we differentiate \(y' \) with respect to \(x \), using implicit differentiation.

\[
y' = (y + 1)(y - 2) = y^2 - y - 2
\]

\[
y'' = \frac{d}{dx} (y') = \frac{d}{dx} (y^2 - y - 2)
\]

\[
= 2yy' - y'
\]

\[
= (2y - 1)y'
\]

\[
= (2y - 1)(y + 1)(y - 2).
\]

From this formula, we see that \(y'' \) changes sign at \(y = -1, y = 1/2, \) and \(y = 2 \). We add the sign information to the phase line.

4. Sketch an assortment of solution curves in the \(xy \)-plane. The horizontal lines \(y = -1, y = 1/2, \) and \(y = 2 \) partition the plane into horizontal bands in which we know the signs of \(y' \) and \(y'' \). In each band, this information tells us whether the solution curves rise or fall and how they bend as \(x \) increases (Figure 9.12).

The “equilibrium lines” \(y = -1 \) and \(y = 2 \) are also solution curves. (The constant functions \(y = -1 \) and \(y = 2 \) satisfy the differential equation.) Solution curves that cross the line \(y = 1/2 \) have an inflection point there. The concavity changes from concave down (above the line) to concave up (below the line).

As predicted in Step 2, solutions in the middle and lower bands approach the equilibrium value \(y = -1 \) as \(x \) increases. Solutions in the upper band rise steadily away from the value \(y = 2 \).

Stable and Unstable Equilibria

Look at Figure 9.12 once more, in particular at the behavior of the solution curves near the equilibrium values. Once a solution curve has a value near \(y = -1 \), it tends steadily toward that value; \(y = -1 \) is a **stable equilibrium**. The behavior near \(y = 2 \) is just the opposite: all solutions except the equilibrium solution \(y = 2 \) itself move away from it as \(x \) increases. We call \(y = 2 \) an **unstable equilibrium**. If the solution is at that value, it stays, but if it is off by any amount, no matter how small, it moves away. (Sometimes an equilibrium value is unstable because a solution moves away from it only on one side of the point.)

Now that we know what to look for, we can already see this behavior on the initial phase line. The arrows lead away from \(y = 2 \) and, once to the left of \(y = 2 \), toward \(y = -1 \).
We now present several applied examples for which we can sketch a family of solution curves to the differential equation models using the method in Example 2.

In Section 7.5 we solved analytically the differential equation modeling Newton’s law of cooling. Here \(H \) is the temperature (amount of heat) of an object at time \(t \) and \(H_s \) is the constant temperature of the surrounding medium. Our first example uses a phase line analysis to understand the graphical behavior of this temperature model over time.

EXAMPLE 3 Cooling Soup

What happens to the temperature of the soup when a cup of hot soup is placed on a table in a room? We know the soup cools down, but what does a typical temperature curve look like as a function of time?

Solution Suppose that the surrounding medium has a constant Celsius temperature of 15°C. We can then express the difference in temperature as \(H - H_s \). By Newton’s law of cooling, there is a constant of proportionality such that

\[
\frac{dH}{dt} = -k(H - H_s), \quad k > 0
\]

(1)

(\(-k \) to give a negative derivative when \(H > 15 \)).

Since \(dH/dt = 0 \) at \(H = 15 \), the temperature 15°C is an equilibrium value. If \(H > 15 \), Equation (1) tells us that \((H - 15) > 0 \) and \(dH/dt < 0 \). If the object is hotter than the room, it will get cooler. Similarly, if \(H < 15 \), then \((H - 15) < 0 \) and \(dH/dt > 0 \). An object cooler than the room will warm up. Thus, the behavior described by Equation (1) agrees with our intuition of how temperature should behave. These observations are captured in the initial phase line diagram in Figure 9.13. The value \(H = 15 \) is a stable equilibrium.

We determine the concavity of the solution curves by differentiating both sides of Equation (1) with respect to \(t \):

\[
\frac{d}{dt} \left(\frac{dH}{dt} \right) = \frac{d}{dt} \left(-k(H - 15) \right)
\]

\[
\frac{d^2H}{dt^2} = -k \frac{dH}{dt}
\]

Since \(-k\) is negative, we see that \(d^2H/dt^2 \) is positive when \(dH/dt < 0 \) and negative when \(dH/dt > 0 \). Figure 9.14 adds this information to the phase line.

The completed phase line shows that if the temperature of the object is above the equilibrium value of 15°C, the graph of \(H(t) \) will be decreasing and concave upward. If the temperature is below 15°C (the temperature of the surrounding medium), the graph of \(H(t) \) will be increasing and concave downward. We use this information to sketch typical solution curves (Figure 9.15).

From the upper solution curve in Figure 9.15, we see that as the object cools down, the rate at which it cools slows down because \(dH/dt \) approaches zero. This observation is implicit in Newton’s law of cooling and contained in the differential equation, but the flattening of the graph as time advances gives an immediate visual representation of the phenomenon. The ability to discern physical behavior from graphs is a powerful tool in understanding real-world systems.

FIGURE 9.13 First step in constructing the phase line for Newton’s law of cooling in Example 3. The temperature tends towards the equilibrium (surrounding-medium) value in the long run.

FIGURE 9.14 The complete phase line for Newton’s law of cooling (Example 3).

FIGURE 9.15 Temperature versus time. Regardless of initial temperature, the object’s temperature \(H(t) \) tends toward 15°C, the temperature of the surrounding medium.
EXAMPLE 4 Analyzing the Fall of a Body Encountering a Resistive Force

Galileo and Newton both observed that the rate of change in momentum encountered by a moving object is equal to the net force applied to it. In mathematical terms,

\[F = \frac{d}{dt} (mv) \] \hspace{1cm} (2)

where \(F \) is the force and \(m \) and \(v \) the object's mass and velocity. If \(m \) varies with time, as it will if the object is a rocket burning fuel, the right-hand side of Equation (2) expands to \(m \frac{dv}{dt} + v \frac{dm}{dt} \) using the Product Rule. In many situations, however, \(m \) is constant, and Equation (2) takes the simpler form

\[F = m \frac{dv}{dt} \] or \[F = ma, \] \hspace{1cm} (3)

known as Newton's second law of motion.

In free fall, the constant acceleration due to gravity is denoted by \(g \) and the one force acting downward on the falling body is \(F_p = mg \), the propulsion due to gravity. If, however, we think of a real body falling through the air—say, a penny from a great height or a parachutist from an even greater height—we know that at some point air resistance is a factor in the speed of the fall. A more realistic model of free fall would include air resistance, shown as a force \(F_r \) in the schematic diagram in Figure 9.16.

For low speeds well below the speed of sound, physical experiments have shown that \(F_r \) is approximately proportional to the body's velocity. The net force on the falling body is therefore

\[F = F_p - F_r, \]

giving

\[m \frac{dv}{dt} = mg - kv \]

\[\frac{dv}{dt} = g - \frac{k}{m} v. \] \hspace{1cm} (4)

We can use a phase line to analyze the velocity functions that solve this differential equation.

The equilibrium point, obtained by setting the right-hand side of Equation (4) equal to zero, is

\[v = \frac{mg}{k}. \]

If the body is initially moving faster than this, \(\frac{dv}{dt} \) is negative and the body slows down. If the body is moving at a velocity below \(mg/k \), then \(\frac{dv}{dt} > 0 \) and the body speeds up. These observations are captured in the initial phase line diagram in Figure 9.17.

We determine the concavity of the solution curves by differentiating both sides of Equation (4) with respect to \(t \):

\[\frac{d^2v}{dt^2} = \frac{d}{dt} \left(g - \frac{k}{m} v \right) = -\frac{k}{m} \frac{dv}{dt}. \]
We see that \(\frac{dv}{dt} > 0 \) when \(v < mg/k \) and \(\frac{dv}{dt} < 0 \) when \(v > mg/k \). Figure 9.18 adds this information to the phase line. Notice the similarity to the phase line for Newton's law of cooling (Figure 9.14). The solution curves are similar as well (Figure 9.19).

Figure 9.19 shows two typical solution curves. Regardless of the initial velocity, we see the body's velocity tending toward the limiting value \(v = mg/k \). This value, a stable equilibrium point, is called the body's terminal velocity. Skydivers can vary their terminal velocity from 95 mph to 180 mph by changing the amount of body area opposing the fall.

EXAMPLE 5 Analyzing Population Growth in a Limiting Environment

In Section 7.5 we examined population growth using the model of exponential change. That is, if \(P \) represents the number of individuals and we neglect departures and arrivals, then

\[
\frac{dP}{dt} = kP, \tag{5}
\]

where \(k > 0 \) is the birthrate minus the death rate per individual per unit time.

Because the natural environment has only a limited number of resources to sustain life, it is reasonable to assume that only a maximum population \(M \) can be accommodated. As the population approaches this limiting population or carrying capacity, resources become less abundant and the growth rate \(k \) decreases. A simple relationship exhibiting this behavior is

\[
k = r(M - P),
\]

where \(r > 0 \) is a constant. Notice that \(k \) decreases as \(P \) increases toward \(M \) and that \(k \) is negative if \(P \) is greater than \(M \). Substituting \(r(M - P) \) for \(k \) in Equation (5) gives the differential equation

\[
\frac{dP}{dt} = r(M - P)P = rMP - rP^2. \tag{6}
\]

The model given by Equation (6) is referred to as logistic growth.

We can forecast the behavior of the population over time by analyzing the phase line for Equation (6). The equilibrium values are \(P = M \) and \(P = 0 \), and we can see that \(dP/dt > 0 \) if \(0 < P < M \) and \(dP/dt < 0 \) if \(P > M \). These observations are recorded on the phase line in Figure 9.20.

We determine the concavity of the population curves by differentiating both sides of Equation (6) with respect to \(t \):

\[
\frac{d^2P}{dt^2} = \frac{d}{dt}(rMP - rP^2) = rM\frac{dP}{dt} - 2rP\frac{dP}{dt} = r(M - 2P)\frac{dP}{dt}. \tag{7}
\]

If \(P = M/2 \), then \(\frac{d^2P}{dt^2} = 0. \) If \(P < M/2 \), then \((M - 2P) \) and \(dP/dt \) are positive and \(d^2P/dt^2 > 0. \) If \(M/2 < P < M \), then \((M - 2P) < 0, dP/dt > 0, \) and \(d^2P/dt^2 < 0 \). If \(P > M \), then \((M - 2P) \) and \(dP/dt \) are both negative and \(d^2P/dt^2 > 0 \). We add this information to the phase line (Figure 9.21).
The lines $P = M/2$ and $P = M$ divide the first quadrant of the tP-plane into horizontal bands in which we know the signs of both dP/dt and d^2P/dt^2. In each band, we know how the solution curves rise and fall, and how they bend as time passes. The equilibrium lines $P = 0$ and $P = M$ are both population curves. Population curves crossing the line $P = M/2$ have an inflection point there, giving them a sigmoid shape (curved in two directions like a letter S). Figure 9.22 displays typical population curves.

FIGURE 9.22 Population curves in Example 5.