Chapter 9

Practice Exercises

In Exercises 1–20 solve the differential equation.

1. \(\frac{dy}{dx} = \sqrt{y} \cos^2 \sqrt{y} \)
2. \(y' = \frac{3y(x + 1)^2}{y - 1} \)
3. \(yy' = \sec y^2 \sec^2 x \)
4. \(y \cos^2 x \frac{dy}{dx} + \sin x \frac{dy}{dx} = 0 \)
5. \(y' = xe^{1/2} \)
6. \(y' = x \sin x \)
7. \(\sec x y' + x \cos^2 y \frac{dy}{dx} = 0 \)
8. \(2x^2 \frac{dy}{dx} - 3 \sqrt{y} \csc x \frac{dy}{dx} = 0 \)
9. \(y' = \frac{e^y}{x^2} \)
10. \(y' = xe^{-y} \csc y \)
11. \(x(x - 1) \frac{dy}{dx} - y \frac{dy}{dx} = 0 \)
12. \(y' = (y^2 - 1)x^{-1} \)
13. \(2y' - y = xe^{1/2} \)
14. \(y' + y = e^{-x} \sin x \)
15. \(xy' + 2y = 1 - x^{-1} \)
16. \(xy' - y = 2x \ln x \)
17. \((1 + e^x) \frac{dy}{dx} + (ye^x + e^{-x}) \frac{dy}{dx} = 0 \)
18. \(e^{-x} \frac{dy}{dx} + (e^{-x} y - 4x) \frac{dy}{dx} = 0 \)
19. \((x + 3y^2) \frac{dy}{dx} + y \frac{dy}{dx} = 0 \) \((Hint: \frac{d}{dx}(xy) = y \frac{dy}{dx} + x \frac{dy}{dx}) \)
20. \(x \frac{dy}{dx} + (3y - x^{-2} \cos x) \frac{dy}{dx} = 0, \quad x > 0 \)

Initial Value Problems

In Exercises 21–30 solve the initial value problem.

21. \(\frac{dy}{dx} = e^{-x-y} - 2, \quad y(0) = -2 \)
22. \(\frac{dy}{dx} = \frac{y \ln y}{1 + x^2}, \quad y(0) = e^2 \)
23. \((x + 1) \frac{dy}{dx} + 2y = x, \quad x > -1, \quad y(0) = 1 \)
24. \(x \frac{dy}{dx} + 2y = x^2 + 1, \quad x > 0, \quad y(1) = 1 \)
25. \(\frac{dy}{dx} + 3x^2 y = x^2, \quad y(0) = -1 \)
26. \(x \frac{dy}{dx} + (y - \cos x) \frac{dy}{dx} = 0, \quad y\left(\frac{\pi}{2}\right) = 0 \)
27. \(x \frac{dy}{dx} + (y + \sqrt{y}) \frac{dy}{dx} = 0, \quad y(1) = 1 \)
28. \(y^{-2} \frac{dx}{dy} = \frac{e^y}{e^{2x} + 1}, \quad y(0) = 1 \)
29. \(xy' + (x - 2)y = 3x^2 e^{-x}, \quad y(1) = 0 \)
30. \(y \frac{dx}{dy} + (3x - xy + 2) \frac{dy}{dx} = 0, \quad y(2) = -1, \quad y < 0 \)

Euler's Method

In Exercises 31 and 32, use the stated method to solve the initial value problem on the given interval starting at \(x_0 \) with \(\Delta x = 0.1 \).

T 31. Euler: \(y' = y + \cos x, \quad y(0) = 0; \quad 0 \leq x \leq 2; \quad x_0 = 0 \)

T 32. Improved Euler: \(y' = (2 - y)(2x + 3), \quad y(-3) = 1; \quad -3 \leq x \leq -1; \quad x_0 = -3 \)

In Exercises 33 and 34, use the stated method with \(\Delta x = 0.05 \) to estimate \(y(c) \) where \(y \) is the solution to the given initial value problem.

T 33. Improved Euler:\n\[c = 3; \quad \frac{dy}{dx} = \frac{x - 2y}{x + 1}, \quad y(0) = 1 \]
34. Euler:
\[c = 4; \quad \frac{dy}{dx} = \frac{x^2 - 2y + 1}{x}, \quad y(1) = 1 \]

In Exercises 35 and 36, use the stated method to solve the initial value problem graphically, starting at with

- a. \(dx = 0.1 \)
- b. \(dx = -0.1 \)

35. Euler:
\[\frac{dy}{dx} = \frac{1}{e^{x+y} + 2}, \quad y(0) = -2 \]

36. Improved Euler:
\[\frac{dy}{dx} = -\frac{x^2 + y}{e^x + x^2}, \quad y(0) = 0 \]

Slope Fields
In Exercises 37–40, sketch part of the equation's slope field. Then add to your sketch the solution curve that passes through the point \(P(1, -1) \). Use Euler's method with \(x_0 = 1 \) and \(dx = 0.2 \) to estimate \(y(2) \). Round your answers to four decimal places. Find the exact value of \(y(2) \) for comparison.

- 37. \(y' = x \)
- 38. \(y' = 1/x \)
- 39. \(y'' = xy \)
- 40. \(y' = 1/y \)

Autonomous Differential Equations and Phase Lines
In Exercises 41 and 42.

- a. Identify the equilibrium values. Which are stable and which are unstable?
- b. Construct a phase line. Identify the signs of \(y' \) and \(y'' \).
- c. Sketch a representative selection of solution curves.

41. \(\frac{dy}{dx} = y^2 - 1 \)
42. \(\frac{dy}{dx} = y - y^2 \)

Applications

43. Escape velocity The gravitational attraction \(F \) exerted by an airless moon on a body of mass \(m \) at a distance \(s \) from the moon’s center is given by the equation \(F = -\frac{mg}{R^2}s^{-2} \), where \(g \) is the acceleration of gravity at the moon’s surface and \(R \) is the moon’s radius (see accompanying figure). The force \(F \) is negative because it acts in the direction of decreasing \(s \).

\[F = -\frac{mgR^2}{s^2} \]

44. Coasting to a stop Table 9.9 shows the distance \(s \) (meters) coasted on in-line skates in \(t \) sec by Johnathon Krueger. Find a model for his position in the form of Equation (2) of Section 9.5. His initial velocity was \(v_0 = 0.86 \) m/sec, his mass \(m = 30.84 \) kg (he weighed 68 lb), and his total coasting distance 0.97 m.

<table>
<thead>
<tr>
<th>(t) (sec)</th>
<th>(s) (m)</th>
<th>(t) (sec)</th>
<th>(s) (m)</th>
<th>(t) (sec)</th>
<th>(s) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.13</td>
<td>0.93</td>
<td>1.86</td>
<td>0.93</td>
</tr>
<tr>
<td>0.13</td>
<td>0.08</td>
<td>1.06</td>
<td>0.68</td>
<td>2.00</td>
<td>0.94</td>
</tr>
<tr>
<td>0.27</td>
<td>0.19</td>
<td>1.20</td>
<td>0.74</td>
<td>2.13</td>
<td>0.95</td>
</tr>
<tr>
<td>0.40</td>
<td>0.28</td>
<td>1.33</td>
<td>0.79</td>
<td>2.26</td>
<td>0.96</td>
</tr>
<tr>
<td>0.53</td>
<td>0.36</td>
<td>1.46</td>
<td>0.83</td>
<td>2.39</td>
<td>0.96</td>
</tr>
<tr>
<td>0.67</td>
<td>0.45</td>
<td>1.60</td>
<td>0.87</td>
<td>2.53</td>
<td>0.97</td>
</tr>
<tr>
<td>0.80</td>
<td>0.53</td>
<td>1.73</td>
<td>0.90</td>
<td>2.66</td>
<td>0.97</td>
</tr>
</tbody>
</table>