Determining Convergence or Divergence

Which of the series in Exercises 1–36 converge, and which diverge?
Give reasons for your answers.

1. \[\sum_{n=1}^{\infty} \frac{1}{2\sqrt{n} + \sqrt{n}} \]
2. \[\sum_{n=1}^{\infty} \frac{3}{n + \sqrt{n}} \]
3. \[\sum_{n=1}^{\infty} \frac{\sin^2 n}{2^n} \]
4. \[\sum_{n=1}^{\infty} \frac{1 + \cos n}{n^2} \]
5. \[\sum_{n=1}^{\infty} \frac{2n}{3n - 1} \]
6. \[\sum_{n=1}^{\infty} \frac{n + 1}{n^2 \sqrt{n}} \]
7. \[\sum_{n=1}^{\infty} \left(\frac{n}{3n + 1} \right)^n \]
8. \[\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 2}} \]
9. \[\sum_{n=1}^{\infty} \frac{1}{n \ln (\ln n)} \]
10. \[\sum_{n=1}^{\infty} \left(\frac{n}{\ln n} \right)^2 \]
11. \[\sum_{n=1}^{\infty} \frac{(\ln n)^2}{n^3} \]
12. \[\sum_{n=1}^{\infty} \frac{(\ln n)^3}{n^3} \]
13. \[\sum_{n=1}^{\infty} \frac{1}{(1 + \ln n)^2} \]
14. \[\sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \]
15. \[\sum_{n=1}^{\infty} \frac{1}{n + 1} \]
16. \[\sum_{n=1}^{\infty} \frac{1}{n^2} \ln n \]
17. \[\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n + 1} \]
18. \[\sum_{n=1}^{\infty} \frac{1 - n}{n^2} \]
19. \[\sum_{n=1}^{\infty} \frac{n + 2^n}{n^2 2^n} \]
20. \[\sum_{n=1}^{\infty} \frac{1}{n^2 + 1} \]
21. \[\sum_{n=1}^{\infty} \frac{1 - 2^n}{n^2 n^2} \]
22. \[\sum_{n=1}^{\infty} \frac{1}{n^2 2^n} \]
23. \[\sum_{n=1}^{\infty} \frac{1}{3^{n-1} + 1} \]
24. \[\sum_{n=1}^{\infty} \frac{3^{n-1} + 1}{3^n} \]
25. \[\sum_{n=1}^{\infty} \frac{\sin^2 n}{n} \]
26. \[\sum_{n=1}^{\infty} \frac{1}{n} \]
27. \[\sum_{n=1}^{\infty} \frac{10n + 1}{n(n + 1)(n + 2)} \]
28. \[\sum_{n=1}^{\infty} \frac{2n^3 - 3n}{n^2 (n - 2)(n^2 + 5)} \]
29. \[\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{n^{1/3}} \]
30. \[\sum_{n=1}^{\infty} \frac{\sec^{-1} n}{n^{1/3}} \]
31. \[\sum_{n=1}^{\infty} \frac{\coth n}{n} \]
32. \[\sum_{n=1}^{\infty} \frac{\tanh n}{n^2} \]
33. \[\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}} \]
34. \[\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2} \]
35. \[\sum_{n=1}^{\infty} \frac{1}{1 + 2 + 3 + \cdots + n} \]
36. \[\sum_{n=1}^{\infty} \frac{1}{1 + 2^2 + 3^2 + \cdots + n^2} \]

Theory and Examples

37. Prove (a) Part 2 and (b) Part 3 of the Limit Comparison Test.

38. If \(\sum_{n=1}^{\infty} a_n \) is a convergent series of nonnegative numbers, can anything be said about \(\sum_{n=1}^{\infty} (a_n/n) \)? Explain.

39. Suppose that \(a_n > 0 \) and \(b_n > 0 \) for \(n \geq N \) (\(N \) an integer). If \(\lim_{n \to \infty} (a_n/b_n) = \infty \) and \(\sum a_n \) converges, can anything be said about \(\sum b_n \)? Give reasons for your answer.

40. Prove that if \(\sum a_n \) is a convergent series of nonnegative terms, then \(\sum a_n^2 \) converges.

COMPUTER EXPLORATION

41. It is not yet known whether the series

\[\sum_{n=1}^{\infty} \frac{1}{n^3 \sin^2 n} \]

converges or diverges. Use a CAS to explore the behavior of the series by performing the following steps.

a. Define the sequence of partial sums

\[s_k = \sum_{n=1}^{k} \frac{1}{n^3 \sin^2 n} \]

What happens when you try to find the limit of \(s_k \) as \(k \to \infty \)? Does your CAS find a closed form answer for this limit?

b. Plot the first 100 points \((k, s_k)\) for the sequence of partial sums. Do they appear to converge? What would you estimate the limit to be?

c. Next plot the first 200 points \((k, s_k)\). Discuss the behavior in your own words.

d. Plot the first 400 points \((k, s_k)\). What happens when \(k = 355 \)? Calculate the number 355/113. Explain from your calculation what happened at \(k = 355 \). For what values of \(k \) would you guess this behavior might occur again?