The Ratio and Root Tests

The Ratio Test measures the rate of growth (or decline) of a series by examining the ratio a_{n+1}/a_n. For a geometric series $\sum ar^n$, this rate is a constant $((ar^{n+1})/(ar^n) = r)$, and the series converges if and only if its ratio is less than 1 in absolute value. The Ratio Test is a powerful rule extending that result. We prove it on the next page using the Comparison Test.
Proof

(a) \(\rho < 1 \). Let \(r \) be a number between \(\rho \) and 1. Then the number \(\epsilon = r - \rho \) is positive. Since

\[
\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho,
\]

\(a_{n+1}/a_n \) must lie within \(\epsilon \) of \(\rho \) when \(n \) is large enough, say for all \(n \geq N \). In particular

\[
\frac{a_{n+1}}{a_n} < \rho + \epsilon = r, \quad \text{when} \quad n \geq N.
\]

That is,

\[
\begin{align*}
 a_{N+1} &< ra_N, \\
 a_{N+2} &< ra_{N+1} < r^2a_N, \\
 a_{N+3} &< ra_{N+2} < r^3a_N,
 \vdots \\
 a_{N+m} &< ra_{N+m-1} < r^mA_N.
\end{align*}
\]

These inequalities show that the terms of our series, after the \(N \)th term, approach zero more rapidly than the terms in a geometric series with ratio \(r < 1 \). More precisely, consider the series \(\sum c_n \), where \(c_n = a_n \) for \(n = 1, 2, \ldots, N \) and \(c_{N+1} = ra_N, c_{N+2} = r^2a_N, \ldots, c_{N+m} = r^mA_N, \ldots \). Now \(a_n \leq c_n \) for all \(n \), and

\[
\sum_{n=1}^{\infty} c_n = a_1 + a_2 + \cdots + a_{N-1} + a_N + ra_N + r^2a_N + \cdots = a_1 + a_2 + \cdots + a_{N-1} + a_N(1 + r + r^2 + \cdots).
\]

The geometric series \(1 + r + r^2 + \cdots \) converges because \(|r| < 1 \), so \(\sum c_n \) converges. Since \(a_n \leq c_n \), \(\sum a_n \) also converges.

(b) \(1 < \rho \leq \infty \). From some index \(M \) on,

\[
\begin{align*}
 a_{n+1}/a_n &> 1 \quad \text{and} \quad a_M < a_{M+1} < a_{M+2} < \cdots.
\end{align*}
\]

The terms of the series do not approach zero as \(n \) becomes infinite, and the series diverges by the \(n \)th-Term Test.
(c) \(\rho = 1 \). The two series
\[
\sum_{n=1}^{\infty} \frac{1}{n} \quad \text{and} \quad \sum_{n=1}^{\infty} \frac{1}{n^2}
\]
show that some other test for convergence must be used when \(\rho = 1 \).

For \(\sum_{n=1}^{\infty} \frac{1}{n} \):
\[
\frac{a_{n+1}}{a_n} = \frac{1/(n+1)}{1/n} = \frac{n}{n+1} \rightarrow 1.
\]

For \(\sum_{n=1}^{\infty} \frac{1}{n^2} \):
\[
\frac{a_{n+1}}{a_n} = \frac{1/(n+1)^2}{1/n^2} = \left(\frac{n}{n+1} \right)^2 \rightarrow 1^2 = 1.
\]

In both cases, \(\rho = 1 \), yet the first series diverges, whereas the second converges.

EXAMPLE 1 Applying the Ratio Test

Investigate the convergence of the following series.

(a) \(\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n} \)

(b) \(\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!} \)

(c) \(\sum_{n=1}^{\infty} \frac{4^n n!}{(2n)!} \)

Solution

(a) For the series \(\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n} \),
\[
a_{n+1} = \frac{2^{n+1} + 5}{3^{n+1}} = \frac{2^{n+1} + 5}{2^n + 5} = \frac{1}{3} \cdot \frac{2^{n+1} + 5}{2^n + 5} = \frac{1}{3} \cdot \frac{2 + \frac{5}{2^n}}{1 + \frac{5}{2^n}} \rightarrow \frac{1}{3} \cdot \frac{2}{1} = \frac{2}{3}.
\]

The series converges because \(\rho = 2/3 \) is less than 1. This does not mean that 2/3 is the sum of the series. In fact,
\[
\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n} = \sum_{n=0}^{\infty} \left(\frac{2}{3} \right)^n + \sum_{n=0}^{\infty} \frac{5}{3^n} = \frac{1}{1 - 2/3} + \frac{5}{1 - 1/3} = \frac{21}{2}.
\]

(b) If \(a_n = \frac{(2n)!}{n!n!} \), then \(a_{n+1} = \frac{(2n+2)!}{(n+1)!(n+1)!} \) and
\[
\frac{a_{n+1}}{a_n} = \frac{n!(2n+2)(2n+1)(2n)!}{(n+1)!(n+1)!(2n)!} \cdot \frac{(n+1)!}{n!n!} = \frac{(2n+2)(2n+1)}{(n+1)(n+1)} = 4 \cdot \frac{n+2}{n+1} \rightarrow 4.
\]

The series diverges because \(\rho = 4 \) is greater than 1.

(c) If \(a_n = \frac{4^n n!}{(2n)!} \), then
\[
\frac{a_{n+1}}{a_n} = \frac{4^{n+1}(n+1)!(n+1)!}{(2n+2)(2n+1)(2n)!} \cdot \frac{(2n)!}{4^n n!} = \frac{4(n+1)(n+1)}{(2n+2)(2n+1)} = 2 \cdot \frac{n+1}{2n+1} \rightarrow 1.
\]
Because the limit is \(\rho = 1 \), we cannot decide from the Ratio Test whether the series converges. When we notice that \(\frac{a_{n+1}}{a_n} = \frac{(2n + 2)}{(2n + 1)} \), we conclude that \(a_{n+1} \) is always greater than \(a_n \) because \((2n + 2)/(2n + 1) \) is always greater than 1. Therefore, all terms are greater than or equal to \(a_1 = 2 \), and the \(n \)th term does not approach zero as \(n \to \infty \). The series diverges.

The Root Test

The convergence tests we have so far for \(\sum a_n \) work best when the formula for \(a_n \) is relatively simple. But consider the following.

EXAMPLE 2 Let \(a_n = \begin{cases} n/2^n, & n \text{ odd} \\ 1/2^n, & n \text{ even} \end{cases} \). Does \(\sum a_n \) converge?

Solution We write out several terms of the series:

\[
\sum_{n=1}^{\infty} a_n = \frac{1}{2} + \frac{1}{4} + \frac{3}{8} + \frac{1}{16} + \frac{5}{32} + \frac{1}{64} + \frac{7}{128} + \ldots
\]

Clearly, this is not a geometric series. The \(n \)th term approaches zero as \(n \to \infty \), so we do not know if the series diverges. The Integral Test does not look promising. The Ratio Test produces

\[
\frac{a_{n+1}}{a_n} = \begin{cases} \frac{1}{2n}, & n \text{ odd} \\ \frac{n + 1}{2}, & n \text{ even} \end{cases}
\]

As \(n \to \infty \), the ratio is alternately small and large and has no limit. A test that will answer the question (the series converges) is the Root Test.

THEOREM 13 **The Root Test**

Let \(\sum a_n \) be a series with \(a_n \geq 0 \) for \(n \geq N \), and suppose that

\[
\lim_{n \to \infty} \sqrt[n]{a_n} = \rho.
\]

Then

(a) the series converges if \(\rho < 1 \),

(b) the series diverges if \(\rho > 1 \) or \(\rho \) is infinite,

(c) the test is inconclusive if \(\rho = 1 \).

Proof

(a) \(\rho < 1 \). Choose an \(\epsilon > 0 \) so small that \(\rho + \epsilon < 1 \). Since \(\sqrt[n]{a_n} \to \rho \), the terms \(\sqrt[n]{a_n} \) eventually get closer than \(\epsilon \) to \(\rho \). In other words, there exists an index \(M \geq N \) such that

\[
\sqrt[n]{a_n} < \rho + \epsilon \quad \text{when} \quad n \geq M.
\]
11.5 The Ratio and Root Tests

Then it is also true that

\[a_n < (\rho + e)^n \quad \text{for } n \geq M. \]

Now, \(\sum_{n=M}^{\infty} (\rho + e)^n \), a geometric series with ratio \((\rho + e) < 1\), converges. By comparison, \(\sum_{n=M}^{\infty} a_n \) converges, from which it follows that

\[\sum_{n=1}^{\infty} a_n = a_1 + \cdots + a_{M-1} + \sum_{n=M}^{\infty} a_n \]

converges.

(b) \(1 < \rho \leq \infty \). For all indices beyond some integer \(M \), we have \(\sqrt[n]{a_n} > 1 \), so that \(a_n > 1 \) for \(n > M \). The terms of the series do not converge to zero. The series diverges by the \(n \)th-Term Test.

(c) \(\rho = 1 \). The series \(\sum_{n=1}^{\infty} \frac{1}{n} \) and \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) show that the test is not conclusive when \(\rho = 1 \). The first series diverges and the second converges, but in both cases \(\sqrt[n]{a_n} \to 1 \). \[\square \]

EXAMPLE 3 Applying the Root Test

Which of the following series converges, and which diverges?

(a) \(\sum_{n=1}^{\infty} \frac{n^2}{2^n} \) \hspace{1cm} (b) \(\sum_{n=1}^{\infty} \frac{2^n}{n^2} \) \hspace{1cm} (c) \(\sum_{n=1}^{\infty} \left(\frac{1}{1 + n} \right)^n \)

Solution

(a) \(\sum_{n=1}^{\infty} \frac{n^2}{2^n} \) converges because

\[\sqrt[n]{\frac{n^2}{2^n}} = \frac{\sqrt[n]{n^2}}{\sqrt[n]{2^n}} = \frac{\sqrt[n]{n}}{2} \to \frac{1}{2} < 1. \]

(b) \(\sum_{n=1}^{\infty} \frac{2^n}{n^2} \) diverges because

\[\sqrt[n]{\frac{2^n}{n^2}} = \frac{2}{\sqrt[n]{(\sqrt[n]{n})^n}} \to \frac{2}{1} > 1. \]

(c) \(\sum_{n=1}^{\infty} \left(\frac{1}{1 + n} \right)^n \) converges because

\[\sqrt[n]{\left(\frac{1}{1 + n} \right)^n} = \frac{1}{1 + n} \to 0 < 1. \] \[\square \]

EXAMPLE 2 Revisited

Let \(a_n = \begin{cases} n/2^n, & n \text{ odd} \\ 1/2^n, & n \text{ even} \end{cases} \) Does \(\sum a_n \) converge?

Solution We apply the Root Test, finding that

\[\sqrt[n]{a_n} = \begin{cases} \sqrt[n]{n/2}, & n \text{ odd} \\ 1/2, & n \text{ even} \end{cases} \]

Therefore,

\[\frac{1}{2} \leq \sqrt[n]{a_n} \leq \frac{\sqrt{n}}{2}. \]

Since \(\sqrt[n]{n} \to 1 \) (Section 11.1, Theorem 5), we have \(\lim_{n \to \infty} \sqrt[n]{a_n} = 1/2 \) by the Sandwich Theorem. The limit is less than 1, so the series converges by the Root Test. \[\square \]