Chapter 12: Vectors and the Geometry of Space

Practice Exercises

Vector Calculations in Two Dimensions

In Exercises 1–4, let \(\mathbf{u} = (-3, 4) \) and \(\mathbf{v} = (2, -5) \). Find (a) the component form of the vector and (b) its magnitude.

1. \(3\mathbf{u} - 4\mathbf{v} \)
2. \(\mathbf{u} + \mathbf{v} \)
3. \(-2\mathbf{u} \)
4. \(5\mathbf{v} \)

In Exercises 5–8, find the component form of the vector.

5. The vector obtained by rotating \((0, 1) \) through an angle of \(2\pi/3 \) radians
6. The unit vector that makes an angle of \(\pi/6 \) radian with the positive x-axis
7. The vector 2 units long in the direction \(4\mathbf{i} - \mathbf{j} \)
8. The vector 5 units long in the direction opposite to the direction of \((3/5)\mathbf{i} + (4/5)\mathbf{j} \)

Express the vectors in Exercises 9–12 in terms of their lengths and directions.

9. \(\sqrt{2}\mathbf{i} + \sqrt{2}\mathbf{j} \)
10. \(-\mathbf{i} - \mathbf{j} \)
11. Velocity vector \(\mathbf{v} = (-2 \sin t)\mathbf{i} + (2 \cos t)\mathbf{j} \) when \(t = \pi/2 \).
12. Velocity vector \(\mathbf{v} = (e^t \cos t - e^t \sin t)\mathbf{i} + (e^t \sin t + e^t \cos t)\mathbf{j} \) when \(t = \ln 2 \).

Vector Calculations in Three Dimensions

Express the vectors in Exercises 13 and 14 in terms of their lengths and directions.

13. \(2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k} \)
14. \(\mathbf{i} + 2\mathbf{j} - \mathbf{k} \)
15. Find a vector 2 units long in the direction of \(\mathbf{v} = 4\mathbf{i} - \mathbf{j} + 4\mathbf{k} \).
16. Find a vector 5 units long in the direction opposite to the direction of \(\mathbf{v} = (3/5)\mathbf{i} + (4/5)\mathbf{k} \).

In Exercises 17 and 18, find \(|\mathbf{v}|, |\mathbf{u}|, \mathbf{v} \cdot \mathbf{u}, \mathbf{u} \times \mathbf{v}, |\mathbf{v} \times \mathbf{u}| \), the angle between \(\mathbf{v} \) and \(\mathbf{u} \), the scalar component of \(\mathbf{u} \) in the direction of \(\mathbf{v} \), and the vector projection of \(\mathbf{u} \) onto \(\mathbf{v} \).

17. \(\mathbf{v} = \mathbf{i} + \mathbf{j} \) \hspace{1cm} 18. \(\mathbf{v} = \mathbf{i} + \mathbf{j} + 2\mathbf{k} \)
 \(\mathbf{u} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k} \) \hspace{1cm} \(\mathbf{u} = -\mathbf{i} - \mathbf{k} \)

In Exercises 19 and 20, write \(\mathbf{u} \) as the sum of a vector parallel to \(\mathbf{v} \) and a vector orthogonal to \(\mathbf{v} \).

19. \(\mathbf{v} = 2\mathbf{i} + \mathbf{j} - \mathbf{k} \) \hspace{1cm} 20. \(\mathbf{u} = \mathbf{i} - 2\mathbf{j} \)
 \(\mathbf{u} = \mathbf{i} + \mathbf{j} - 5\mathbf{k} \) \hspace{1cm} \(\mathbf{v} = \mathbf{i} + \mathbf{j} + \mathbf{k} \)

In Exercises 21 and 22, draw coordinate axes and then sketch \(\mathbf{u}, \mathbf{v}, \) and \(\mathbf{u} \times \mathbf{v} \) as vectors at the origin.

21. \(\mathbf{u} = \mathbf{i}, \mathbf{v} = \mathbf{i} + \mathbf{j} \) \hspace{1cm} 22. \(\mathbf{u} = \mathbf{i} - \mathbf{j}, \mathbf{v} = \mathbf{i} + \mathbf{j} \)

23. If \(|\mathbf{v}| = 2, |\mathbf{w}| = 3 \), and the angle between \(\mathbf{v} \) and \(\mathbf{w} \) is \(\pi/3 \), find \(|\mathbf{v} - 2\mathbf{w}| \).

24. For what value or values of \(a \) will the vectors \(\mathbf{u} = 2\mathbf{i} + 4\mathbf{j} - 5\mathbf{k} \) and \(\mathbf{v} = -4\mathbf{i} - 8\mathbf{j} + a\mathbf{k} \) be parallel?

In Exercises 25 and 26, find (a) the area of the parallelogram determined by vectors \(\mathbf{u} \) and \(\mathbf{v} \) and (b) the volume of the parallelepiped determined by the vectors \(\mathbf{u}, \mathbf{v}, \) and \(\mathbf{w} \).

25. \(\mathbf{u} = \mathbf{i} + \mathbf{j} - \mathbf{k}, \mathbf{v} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}, \mathbf{w} = -\mathbf{i} - 2\mathbf{j} + 3\mathbf{k} \)
26. \(\mathbf{u} = \mathbf{i} + \mathbf{j}, \mathbf{v} = \mathbf{j}, \mathbf{w} = \mathbf{i} + \mathbf{j} + \mathbf{k} \)
Lines, Planes, and Distances

27. Suppose that \(\mathbf{n} \) is normal to a plane and that \(\mathbf{v} \) is parallel to the plane. Describe how you would find a vector \(\mathbf{n} \) that is both perpendicular to \(\mathbf{v} \) and parallel to the plane.

28. Find a vector in the plane parallel to the line \(ax + by = c \).

In Exercises 29 and 30, find the distance from the point to the line.

29. \((2, 2, 0); \ x = -t, \ y = t, \ z = -1 + t\)
30. \((0, 4, 1); \ x = 2 + t, \ y = 2 + t, \ z = t\)

31. Parametrize the line that passes through the point \((1, 2, 3)\) parallel to the vector \(\mathbf{v} = -3\mathbf{i} + 7\mathbf{k} \).

32. Parametrize the line segment joining the points \(P(1, 2, 0)\) and \(Q(1, 3, -1)\).

In Exercises 33 and 34, find the distance from the point to the plane.

33. \((6, 0, -6); \ x - y = 4\)
34. \((3, 0, 10); \ 2x + 3y + z = 2\)

35. Find an equation for the plane that passes through the point \((3, -2, 1)\) normal to the vector \(\mathbf{n} = 2\mathbf{i} + \mathbf{j} + \mathbf{k} \).

36. Find an equation for the plane that passes through the point \((-1, 6, 0)\) parallel to the line \(x = -1 + t, y = 6 - 2t, z = 3t\).

In Exercises 37 and 38, find an equation for the plane through points \(P, Q,\) and \(R\).

37. \(P(1, -1, 2), \ Q(2, 1, 3), \ R(-1, 2, -1)\)
38. \(P(1, 0, 0), \ Q(0, 1, 0), \ R(0, 0, 1)\)

39. Find the points in which the line \(x = 1 + 2t, y = -1 - t, z = 3t\) meets the three coordinate planes.

40. Find the point in which the line through the origin perpendicular to the plane \(2x - y - z = 4\) meets the plane \(3x - 5y + 2z = 6\).

41. Find the acute angle between the planes \(x = 7\) and \(x + y + \sqrt{2}z = -3\).

42. Find the acute angle between the planes \(x + y = 1\) and \(y + z = 1\).

43. Find parametric equations for the line in which the planes \(x + 2y + z = 1\) and \(x - y + 2z = -8\) intersect.

44. Show that the line in which the planes \(x + 2y - 2z = 5\) and \(5x - 2y - z = 0\) intersect is parallel to the line \(x = -3 + 2t, y = 3t, z = 1 + 4t\).

45. The planes \(3x + 6z = 1\) and \(2x + 2y - z = 3\) intersect in a line.
 a. Show that the planes are orthogonal.
 b. Find equations for the line of intersection.

46. Find an equation for the plane that passes through the point \((1, 2, 3)\) parallel to \(\mathbf{u} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k} \) and \(\mathbf{v} = \mathbf{i} - \mathbf{j} + 2\mathbf{k} \).

47. Is \(\mathbf{v} = 2\mathbf{i} - 4\mathbf{j} + \mathbf{k} \) related in any special way to the plane \(2x + y = 5\)? Give reasons for your answer.

48. The equation \(\mathbf{n} \cdot \mathbf{P}_0\mathbf{P} = 0 \) represents the plane through \(P_0\) normal to \(\mathbf{n} \). What set does the inequality \(\mathbf{n} \cdot \mathbf{P}_0\mathbf{P} > 0 \) represent?

49. Find the distance from the point \(P(1, 4, 0)\) to the plane through \(A(0, 0, 0), B(2, 0, -1)\) and \(C(2, -1, 0)\).

50. Find the distance from the point \((2, 2, 3)\) to the plane \(2x + 3y + 5z = 0\).

51. Find a vector parallel to the plane \(2x - y - z = 4\) and orthogonal to \(\mathbf{i} + \mathbf{j} + \mathbf{k}\).

52. Find a unit vector orthogonal to \(A\) in the plane of \(B\) and \(C\) if \(A = 2\mathbf{i} - \mathbf{j} + \mathbf{k}, B = \mathbf{i} + 2\mathbf{j} + \mathbf{k},\) and \(C = \mathbf{i} + \mathbf{j} - 2\mathbf{k}\).

53. Find a vector of magnitude 2 parallel to the line of intersection of the planes \(x + 2y + z - 1 = 0\) and \(x - y + 2z + 7 = 0\).

54. Find the point in which the line through the origin perpendicular to the plane \(2x - y - z = 4\) meets the plane \(3x - 5y + 2z = 6\).

55. Find the point in which the line through \(P(3, 2, 1)\) normal to the plane \(2x - y + 2z = -2\) meets the plane.

56. What angle does the line of intersection of the planes \(x + y - z = 0\) and \(x + y + 2z = 0\) make with the positive \(x\)-axis?

57. The line \(L: x = 3 + 2t, y = 2t, z = t\) intersects the plane \(x + 3y - z = -4\) in a point \(P\). Find the coordinates of \(P\) and find equations for the line in the plane through \(P\) perpendicular to \(L\).

58. Show that for every real number \(k\) the plane \(x - 2y + z + 3 + k(2x - y - z + 1) = 0\) contains the line of intersection of the planes \(x - 2y + z + 3 = 0\) and \(2x - y - z + 1 = 0\).

59. Find an equation for the plane through \(A(-2, 0, -3)\) and \(B(1, -2, 1)\) that lies parallel to the line through \(C(-2, -13/5, 26/5)\) and \(D(16/5, -13/5, 0)\).

60. Is the line \(x = 1 + 2t, y = -2 + 3t, z = -5t\) related in any way to the plane \(-4x - 6y + 10z = 9\)? Give reasons for your answer.

61. Which of the following are equations for the plane through the points \(P(1, 1, -1), Q(3, 0, 2),\) and \(R(-2, 0, 1)\)?
 a. \((2\mathbf{i} - 3\mathbf{j} + 3\mathbf{k}) \cdot ((x + 2)\mathbf{i} + (y - 1)\mathbf{j} + (z + k)) = 0\)
 b. \(x = 3 - t, \ y = -11r, \ z = 2 - 3t\)
 c. \((x + 2) + 11(y - 1) = 3z\)
 d. \((2\mathbf{i} - 3\mathbf{j} + 3\mathbf{k}) \times ((x + 2)\mathbf{i} + (y - 1)\mathbf{j} + (z + k)) = 0\)
 e. \((2\mathbf{i} - \mathbf{j} + 3\mathbf{k}) \times ((-3\mathbf{i} + k) \cdot ((x + 2)\mathbf{i} + (y - 1)\mathbf{j} + (z + k)) = 0\)

62. The parallelogram shown on page 902 has vertices at \(A(2, -1, 4), B(1, 0, -1), C(1, 2, 3),\) and \(D\). Find
f. the areas of the orthogonal projections of the parallelogram on the three coordinate planes.

63. Distance between lines Find the distance between the line L_1 through the points $A(1, 0, -1)$ and $B(-1, 1, 0)$ and the line L_2 through the points $C(3, 1, -1)$ and $D(4, 5, -2)$. The distance is to be measured along the line perpendicular to the two lines. First find a vector \mathbf{n} perpendicular to both lines. Then project \overrightarrow{AC} onto \mathbf{n}.

64. (Continuation of Exercise 63.) Find the distance between the line through $A(4, 0, 2)$ and $B(2, 4, 1)$ and the line through $C(1, 3, 2)$ and $D(2, 2, 4)$.

Quadric Surfaces
Identify and sketch the surfaces in Exercises 65–76.

65. $x^2 + y^2 + z^2 = 4$
66. $x^2 + (y - 1)^2 + z^2 = 1$

67. $4x^2 + 4y^2 + z^2 = 4$
68. $36x^2 + 9y^2 + 4z^2 = 36$

69. $z = -(x^2 + y^2)$
70. $y = -(x^2 + z^2)$

71. $x^2 + y^2 = z^2$
72. $x^2 + z^2 = y^2$

73. $x^2 + y^2 - z^2 = 4$
74. $4y^2 + z^2 - 4x^2 = 4$

75. $y^2 - x^2 - z^2 = 1$
76. $z^2 - x^2 - y^2 = 1$