EXERCISES 14.4

Chain Rule: One Independent Variable

In Exercises 1–6, (a) express \(dw/dt \) as a function of \(t \), both by using the Chain Rule and by expressing \(w \) in terms of \(t \) and differentiating directly with respect to \(t \). Then (b) evaluate \(dw/dt \) at the given value of \(t \).

1. \(w = x^2 + y^2, \ x = \cos t, \ y = \sin t; \ t = \pi \)
2. \(w = x^2 + y^2, \ x = \cos t + \sin t, \ y = \cos t - \sin t; \ t = 0 \)
3. \(w = \frac{x}{y} + \frac{y}{x}, \ x = \cos^2 t, \ y = \sin^2 t; \ z = 1/t; \ t = 3 \)
4. \(w = \ln (x^2 + y^2 + z^2), \ x = \cos t, \ y = \sin t, \ z = 4\sqrt{t}; \ t = 3 \)
5. \(w = 2ye^x - \sin z, \ x = \ln (t^2 + 1), \ y = \tan^{-1} t, \ z = e^t; \ t = 1 \)
6. \(w = z - \sin xy, \ x = t, \ y = \ln t, \ z = e^{t-1}; \ t = 1 \)

Chain Rule: Two and Three Independent Variables

In Exercises 7 and 8, (a) express \(\partial z/\partial u \) and \(\partial z/\partial v \) as functions of \(u \) and \(v \) both by using the Chain Rule and by expressing \(z \) directly in terms of \(u \) and \(v \) before differentiating. Then (b) evaluate \(\partial z/\partial u \) and \(\partial z/\partial v \) at the given point \((u, v)\).

7. \(z = 4e^t \ln y, \ x = \ln (u \cos v), \ y = u \sin v; \) \((u, v) = (2, \pi/4)\)
8. \(z = \tan^{-1} (x/y), \ x = u \cos v, \ y = u \sin v; \) \((u, v) = (1.3, \pi/6)\)

In Exercises 9 and 10, (a) express \(\partial w/\partial u \) and \(\partial w/\partial v \) as functions of \(u \) and \(v \) both by using the Chain Rule and by expressing \(w \) directly in terms of \(u \) and \(v \) before differentiating. Then (b) evaluate \(\partial w/\partial u \) and \(\partial w/\partial v \) at the given point \((u, v)\).

9. \(w = xy + yz + xz, \ x = u + v, \ y = u - v, \ z = uv; \) \((u, v) = (1/2, 1)\)
10. \(w = \ln (x^2 + y^2 + z^2), \ x = ue^v \sin u, \ y = ue^v \cos u, \ z = ue^v; \) \((u, v) = (-2, 0)\)

In Exercises 11 and 12, (a) express \(\partial u/\partial x, \partial u/\partial y, \) and \(\partial u/\partial z \) as functions of \(x, y, \) and \(z \) both by using the Chain Rule and by expressing \(u \) directly in terms of \(x, y, \) and \(z \) before differentiating. Then (b) evaluate \(\partial u/\partial x, \partial u/\partial y, \) and \(\partial u/\partial z \) at the given point \((x, y, z)\).

11. \(u = \frac{p - q}{q - r}, \ p = x + y + z, \ q = x - y + z, \ r = x + y - z; \) \((x, y, z) = (\sqrt{3}, 2, 1)\)
12. \(u = e^{q \sin^{-1} p}, \ p = \sin x, \ q = z^2 \ln y, \ r = 1/z; \) \((x, y, z) = (\pi/4, 1/2, -1/2)\)

Using a Tree Diagram

In Exercises 13–24, draw a tree diagram and write a Chain Rule formula for each derivative.

13. \(\frac{dz}{dt} \) for \(z = f(x, y), \ x = g(t), \ y = h(t) \)
14. \(\frac{dz}{dt} \) for \(z = f(u, v, w), \ u = g(t), \ v = h(t), \ w = k(t) \)
15. \(\frac{\partial w}{\partial u} \) and \(\frac{\partial w}{\partial v} \) for \(w = h(x, y, z), \ x = f(u, v), \ y = g(u, v), \ z = k(u, v) \)
Finding Specified Partial Derivatives

33. Find $\frac{\partial w}{\partial r}$ when $r = 1, s = -1$ if $w = (x + y + z)^2$, $x = r - s, y = \cos (r + s), z = \sin (r + s)$.

34. Find $\frac{\partial w}{\partial v}$ when $u = -1, v = 2$ if $w = xy + \ln z$, $x = v^2/u, y = u + v, z = \cos u$.

35. Find $\frac{\partial w}{\partial v}$ when $u = 0, v = 0$ if $w = x^2 + (y/x)$, $x = u - 2v + 1, y = 2u + v - 2$.

36. Find $\frac{\partial z}{\partial u}$ when $u = 0, v = 1$ if $z = \sin xy + x \sin y$, $x = u^2 + v^2, y = uv$.

37. Find $\frac{\partial z}{\partial u} \text{ and } \frac{\partial z}{\partial v}$ when $u = \ln 2, v = 1$ if $z = 5 \tan^{-1} x$ and $x = e^u + \ln v$.

38. Find $\frac{\partial z}{\partial u} \text{ and } \frac{\partial z}{\partial v}$ when $u = 1$ and $v = -2$ if $z = \ln q$ and $q = \sqrt{u + v^3} \tan^{-1} u$.

Theory and Examples

39. Changing voltage in a circuit The voltage V in a circuit that satisfies the law $V = IR$ is slowly dropping as the battery wears out. At the same time, the resistance R is increasing as the resistor heats up. Use the equation

$$\frac{dV}{dt} = \frac{\partial V}{\partial I} \frac{dI}{dt} + \frac{\partial V}{\partial R} \frac{dR}{dt}$$

to find how the current is changing at the instant when $R = 600$ ohms, $I = 0.04$ amp, $dR/dt = 0.5$ ohm/sec, and $dV/dt = -0.01$ volt/sec.

40. Changing dimensions in a box The lengths $a, b, \text{ and } c$ of the edges of a rectangular box are changing with time. At the instant in question, $a = 1 \text{ m, } b = 2 \text{ m, } c = 3 \text{ m, } da/dt = db/dt = 1 \text{ m/sec,}$

t and $dc/dt = -3 \text{ m/sec.}$ At what rates are the box’s volume V and surface area S changing at that instant? Are the box’s interior diagonals increasing in length or decreasing?

41. If $f(u, v, w)$ is differentiable and $u = x - y, v = y - z$, and $w = z - x$, show that

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} = 0.$$
a. Show that
\[
\frac{\partial w}{\partial r} = f_x \cos \theta + f_y \sin \theta
\]
and
\[
\frac{1}{r} \frac{\partial w}{\partial \theta} = -f_x \sin \theta + f_y \cos \theta.
\]
b. Solve the equations in part (a) to express \(f_x\) and \(f_y\) in terms of \(\partial w/\partial r\) and \(\partial w/\partial \theta\).
c. Show that
\[
(f_x)^2 + (f_y)^2 = \left(\frac{\partial w}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial w}{\partial \theta}\right)^2.
\]

43. Laplace equations

Show that if \(w = f(u, v)\) satisfies the Laplace equation \(f_{uu} + f_{vv} = 0\) and if \(u = (x^2 - y^2)/2\) and \(v = xy\), then \(w\) satisfies the Laplace equation \(w_{xx} + w_{yy} = 0\).

44. Laplace equations

Let \(w = f(u) + g(v)\), where \(u = x + iy\) and \(v = x - iy\) and \(i = \sqrt{-1}\). Show that \(w\) satisfies the Laplace equation \(w_{xx} + w_{yy} = 0\) if all the necessary functions are differentiable.

Changes in Functions Along Curves

45. Extreme values on a helix

Suppose that the partial derivatives of a function \(f(x, y, z)\) at points on the helix \(x = \cos t, y = \sin t, z = t\) are
\[
f_x = \cos t, \quad f_y = \sin t, \quad f_z = t^2 + 1 - 2.
\]
At what points on the curve, if any, can \(f\) take on extreme values?

46. A space curve

Let \(w = x^2 e^{3z}\). Find the value of \(dw/dt\) at the point \((1, \ln 2, 0)\) on the curve \(x = \cos t, y = \ln (t + 2), z = t\).

47. Temperature on a circle

Let \(T = f(x, y)\) be the temperature at the point \((x, y)\) on the circle \(x = \cos t, y = \sin t, 0 \leq t \leq 2\pi\) and suppose that
\[
\frac{\partial T}{\partial x} = 8x - 4y, \quad \frac{\partial T}{\partial y} = 8y - 4x.
\]
a. Find where the maximum and minimum temperatures on the circle occur by examining the derivatives \(dT/dt\) and \(d^2T/dt^2\).

b. Suppose that \(T = 4x^2 - 4xy + 4y^2\). Find the maximum and minimum values of \(T\) on the circle.

48. Temperature on an ellipse

Let \(T = g(x, y)\) be the temperature at the point \((x, y)\) on the ellipse
\[
x = 2\sqrt{2} \cos t, \quad y = \sqrt{2} \sin t, \quad 0 \leq t \leq 2\pi,
\]
and suppose that
\[
\begin{align*}
\frac{\partial T}{\partial x} &= y, \\
\frac{\partial T}{\partial y} &= x.
\end{align*}
\]
a. Locate the maximum and minimum temperatures on the ellipse by examining \(dT/dt\) and \(d^2T/dt^2\).

b. Suppose that \(T = xy - 2\). Find the maximum and minimum values of \(T\) on the ellipse.

Differentiating Integrals

Under mild continuity restrictions, it is true that if
\[
F(x) = \int_a^b g(t, x) \, dt,
\]
then \(F'(x) = \int_a^b g_x(t, x) \, dt\). Using this fact and the Chain Rule, we can find the derivative of
\[
F(x) = \int_a^b g(t, x) \, dt
\]
by letting
\[
G(u, x) = \int_a^u g(t, x) \, dt,
\]
where \(u = f(x)\). Find the derivatives of the functions in Exercises 49 and 50.

49. \(F(x) = \int_0^{x^2} \sqrt{t^4 + x^3} \, dt\)

50. \(F(x) = \int_0^x \sqrt{i^3 + x^2} \, dt\)