15.3 Double Integrals in Polar Form

EXERCISES 15.3

Evaluating Polar Integrals

In Exercises 1–16, change the Cartesian integral into an equivalent polar integral. Then evaluate the polar integral.

1. \(\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} dy \ dx \)
2. \(\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} dy \ dx \)
3. \(\int_{0}^{\pi} \int_{0}^{\sqrt{a^2-r^2}} (x^2 + y^2) \ dx \ dy \)
4. \(\int_{0}^{2\pi} \int_{0}^{\sqrt{a^2-r^2}} (x^2 + y^2) \ dx \ dy \)
5. \(\int_{0}^{\pi/2} \int_{0}^{a} r \ dr \ \sin \theta \ d\theta \)
6. \(\int_{0}^{\pi/2} \int_{0}^{a} r \ dr \ \cos \theta \ d\theta \)
7. \(\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} y \ dx \ dy \)
8. \(\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} y \ dx \ dy \)
9. \(\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} 2 \ dx \ dy \)
10. \(\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} (4x^2 + y^2) \ dx \ dy \)
11. \(\int_{0}^{\ln 2} \int_{0}^{\sqrt{1-x^2}} \ e^{\sqrt{x^2+y^2}} \ dx \ dy \)
12. \(\int_{0}^{\pi/2} \int_{0}^{\sqrt{a^2-r^2}} \ e^{r \sin \theta} \ dr \ d\theta \)
13. \(\int_{0}^{\pi/2} \int_{0}^{\sqrt{a^2-r^2}} \ x + y \ \frac{r \ dr \ d\theta}{x^2 + y^2} \)
14. \(\int_{0}^{\pi/2} \int_{0}^{\sqrt{a^2-r^2}} \ xy \ \frac{r \ dr \ d\theta}{x^2 + y^2} \)
15. \(\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} \ln (x^2 + y^2 + 1) \ dx \ dy \)
16. \(\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} \frac{2}{1 + \sqrt{x^2 + y^2}} \ dx \ dy \)

Finding Area in Polar Coordinates

17. Find the area of the region cut from the first quadrant by the curve \(r = 2(2 - \sin 2\theta) \).
18. Cardioid overlapping a circle Find the area of the region that lies inside the cardioid \(r = 1 + \cos \theta \) and outside the circle \(r = 1 \).
19. One leaf of a rose Find the area enclosed by one leaf of the rose \(r = 12 \cos 3\theta \).
20. Snail shell Find the area of the region enclosed by the positive \(x \)-axis and spiral \(r = 4\theta/3 \), \(0 \leq \theta \leq 2\pi \). The region looks like a snail shell.
21. Cardioid in the first quadrant Find the area of the region cut from the first quadrant by the cardioid \(r = 1 + \sin \theta \).
22. Overlapping cardioids Find the area of the region common to the interiors of the cardioids \(r = 1 + \cos \theta \) and \(r = 1 - \cos \theta \).

Masses and Moments

23. First moment of a plate Find the first moment about the \(x \)-axis of a thin plate of constant density \(\delta(x, y) = 3 \), bounded below by the \(x \)-axis and above by the cardioid \(r = 1 - \cos \theta \).
24. Inertial and polar moments of a disk Find the moment of inertia about the \(x \)-axis and the polar moment of inertia about the origin of a thin disk bounded by the circle \(x^2 + y^2 = a^2 \) if the disk’s density at the point \((x, y) \) is \(\delta(x, y) = k(x^2 + y^2) \), \(k \) a constant.
25. Mass of a plate Find the mass of a thin plate covering the region outside the circle \(r = 3 \) and inside the circle \(r = 6 \sin \theta \) if the plate’s density function is \(\delta(x, y) = 1/r \).
26. Polar moment of a cardioid overlapping circle Find the polar moment of inertia about the origin of a thin plate covering the region that lies inside the cardioid \(r = 1 - \cos \theta \) and outside the circle \(r = 1 \) if the plate’s density function is \(\delta(x, y) = 1/r^2 \).
27. Centroid of a cardioid region Find the centroid of the region enclosed by the cardioid \(r = 1 + \cos \theta \).
28. Polar moment of a cardioid region Find the polar moment of inertia about the origin of a thin plate enclosed by the cardioid \(r = 1 + \cos \theta \) if the plate’s density function is \(\delta(x, y) = 1 \).

Average Values

29. Average height of a hemisphere Find the average height of the hemisphere \(z = \sqrt{a^2 - x^2 - y^2} \) above the disk \(x^2 + y^2 \leq a^2 \) in the \(xy \)-plane.
30. Average height of a cone Find the average height of the (single) cone \(z = \sqrt{x^2 + y^2} \) above the disk \(x^2 + y^2 \leq a^2 \) in the \(xy \)-plane.
31. Average distance from interior of disk to center Find the average distance from a point \(P(x, y) \) in the disk \(x^2 + y^2 \leq a^2 \) to the origin.
32. Average distance squared from a point in a disk to a point in its boundary Find the average value of the square of the distance from the point \(P(x, y) \) in the disk \(x^2 + y^2 \leq a^2 \) to the boundary point \(A(1, 0) \).

Theory and Examples

33. Converting to a polar integral Integrate \(f(x, y) = \frac{\ln (x^2 + y^2)}{\sqrt{x^2 + y^2}} \) over the region \(1 \leq x^2 + y^2 \leq e \).
34. Converting to a polar integral Integrate \(f(x, y) = \frac{\ln (x^2 + y^2)}{(x^2 + y^2)} \) over the region \(1 \leq x^2 + y^2 \leq e^2 \).
35. Volume of noncircular right cylinder The region that lies inside the cardioid \(r = 1 + \cos \theta \) and outside the circle \(r = 1 \) is the base of a solid right cylinder. The top of the cylinder lies in the plane \(z = x \). Find the cylinder’s volume.
36. **Volume of noncircular right cylinder**
 The region enclosed by the lemniscate \(r^2 = 2 \cos 2\theta \) is the base of a solid right cylinder whose top is bounded by the sphere \(z = \sqrt{2 - r^2} \). Find the cylinder’s volume.

37. **Converting to polar integrals**
 a. The usual way to evaluate the improper integral
 \[I = \int_{-\infty}^{\infty} e^{-x^2} \, dx \]
 is first to calculate its square:
 \[I^2 = \left(\int_{-\infty}^{\infty} e^{-x^2} \, dx \right) \left(\int_{-\infty}^{\infty} e^{-y^2} \, dy \right) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)} \, dx \, dy. \]
 Evaluate the last integral using polar coordinates and solve the resulting equation for \(I \).

 b. Evaluate
 \[
 \lim_{x \to \infty} \text{erf}(x) = \lim_{x \to \infty} \int_{0}^{x} \frac{2e^{-t^2}}{\sqrt{\pi}} \, dt.
 \]

38. **Converting to a polar integral**
 Evaluate the integral
 \[
 \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{(1 + x^2 + y^2)^2} \, dx \, dy.
 \]

39. **Existence**
 Integrate the function \(f(x, y) = 1/(1 - x^2 - y^2) \) over the disk \(x^2 + y^2 \leq 3/4 \). Does the integral of \(f(x, y) \) over the disk \(x^2 + y^2 \leq 1 \) exist? Give reasons for your answer.

40. **Area formula in polar coordinates**
 Use the double integral in polar coordinates to derive the formula
 \[A = \int_{\alpha}^{\beta} \frac{1}{2} r^2 \, d\theta \]
 for the area of the fan-shaped region between the origin and polar curve \(r = f(\theta) \), \(\alpha \leq \theta \leq \beta \).

41. **Average distance to a given point inside a disk**
 Let \(P_0 \) be a point inside a circle of radius \(a \) and let \(h \) denote the distance from \(P_0 \) to the center of the circle. Let \(d \) denote the distance from an arbitrary point \(P \) to \(P_0 \). Find the average value of \(d^2 \) over the region enclosed by the circle. (**Hint:** Simplify your work by placing the center of the circle at the origin and \(P_0 \) on the \(x \)-axis.)

42. **Area**
 Suppose that the area of a region in the polar coordinate plane is
 \[A = \int_{\pi/4}^{3\pi/4} \int_{\cos \theta}^{2 \sin \theta} r \, dr \, d\theta. \]
 Sketch the region and find its area.

COMPUTER EXPLORATIONS

Coordinate Conversions

In Exercises 43–46, use a CAS to change the Cartesian integrals into an equivalent polar integral and evaluate the polar integral. Perform the following steps in each exercise.

a. Plot the Cartesian region of integration in the \(xy \)-plane.

b. Change each boundary curve of the Cartesian region in part (a) to its polar representation by solving its Cartesian equation for \(r \) and \(\theta \).

c. Using the results in part (b), plot the polar region of integration in the \(r\theta \)-plane.

d. Change the integrand from Cartesian to polar coordinates. Determine the limits of integration from your plot in part (c) and evaluate the polar integral using the CAS integration utility.

43. \[\int_{0}^{1} \int_{x}^{\sqrt{x^2 + y^2}} y \, dx \, dy \]
44. \[\int_{0}^{1} \int_{x}^{\sqrt{x^2 + y^2}} x \, dx \, dy \]
45. \[\int_{-\sqrt{3}}^{\sqrt{3}} \int_{x^2 + y^2}^{\sqrt{x^2 + 3}} \, dx \, dy \]
46. \[\int_{0}^{1} \int_{\sqrt{x}}^{2x} \, dy \, dx \]