EXERCISES 15.4

Evaluating Triple Integrals in Different Iterations

1. Evaluate the integral in Example 2 taking \(F(x, y, z) = 1 \) to find the volume of the tetrahedron.

2. **Volume of rectangular solid** Write six different iterated triple integrals for the volume of the rectangular solid in the first octant bounded by the coordinate planes and the planes \(x = 1, y = 2, \) and \(z = 3 \). Evaluate one of the integrals.

3. **Volume of tetrahedron** Write six different iterated triple integrals for the volume of the tetrahedron cut from the first octant by the plane \(z = 8 - x^2 - y^2 \). Evaluate one of the integrals.

4. **Volume of solid** Write six different iterated triple integrals for the volume of the region in the first octant enclosed by the cylinder \(x^2 + y^2 = 4 \) and the plane \(y = 3 \). Evaluate one of the integrals.

5. **Volume enclosed by paraboloids** Let \(D \) be the region bounded by the paraboloids \(z = 8 - x^2 - y^2 \) and \(z = x^2 + y^2 \). Write six different triple iterated integrals for the volume of \(D \). Evaluate one of the integrals.

6. **Volume inside paraboloid beneath a plane** Let \(D \) be the region bounded by the paraboloid \(z = x^2 + y^2 \) and the plane \(z = 2y \). Write triple iterated integrals in the order \(dz \, dx \, dy \) and \(dz \, dy \, dx \) that give the volume of \(D \). Do not evaluate either integral.

Evaluating Triple Iterated Integrals

Evaluate the integrals in Exercises 7–20.

1. \(\int_0^1 \int_0^1 \int_0^1 (x^2 + y^2 + z^2) \, dz \, dy \, dx \)

2. \(\int_0^{\sqrt{2}} \int_0^{r^2 - x^2 - y^2} \, dz \, dx \, dy \)

3. \(\int_0^e \int_0^e \int_0^1 \frac{1}{\sqrt[3]{x^2 + y^2 + z^2}} \, dx \, dy \, dz \)

4. \(\int_0^1 \int_0^3 - 3x \int_0^3 - 3x - y \, dz \, dy \)

5. \(\int_0^1 \int_0^1 \int_0^1 (x + y + z) \, dy \, dx \, dz \)

6. \(\int_0^3 \int_0^{\sqrt{9 - x^2}} \int_0^{\sqrt{9 - z^2}} \, dz \, dy \, dx \)

7. \(\int_0^2 \int_0^{\sqrt{4 - y^2}} \int_0^{2x + y} \, dz \, dx \, dy \)

8. \(\int_0^1 \int_0^{2 - x} \int_0^{2 - x - y} \, dz \, dy \, dx \)

9. \(\int_0^1 \int_0^e \int_0^e \ln r \ln s \ln t \, dt \, dr \, dw \) (rsw-space)

10. \(\int_0^e \int_0^e \int_0^e \ln r \ln s \ln t \, dt \, dr \, dw \) (rst-space)

11. \(\int_0^{\pi/4} \int_0^{\ln \sec \theta} \int_0^{2\pi} e^u \, du \, dv \) (tuv-space)

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley
20. $\int_{0}^{1} \int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \frac{q}{r} \, dq \, dr \, dz$ (pqr-space)

Volumes Using Triple Integrals

21. Here is the region of integration of the integral

$$\int_{-1}^{1} \int_{0}^{1} \int_{0}^{1-y} dz \, dy \, dx.$$

Rewrite the integral as an equivalent iterated integral in the order

a. $dy \, dz \, dx$

b. $dy \, dx \, dz$

c. $dx \, dy \, dz$

d. $dx \, dz \, dy$

e. $dz \, dx \, dy$.

22. Here is the region of integration of the integral

$$\int_{0}^{1} \int_{-1}^{1} \int_{0}^{y^2} dz \, dy \, dx.$$

Rewrite the integral as an equivalent iterated integral in the order

a. $dy \, dz \, dx$

b. $dy \, dx \, dz$

c. $dx \, dy \, dz$

d. $dx \, dz \, dy$

e. $dz \, dx \, dy$.

Find the volumes of the regions in Exercises 23–36.

23. The region between the cylinder $z = y^2$ and the xy-plane that is bounded by the planes $x = 0, x = 1, y = -1, y = 1$
28. The region in the first octant bounded by the coordinate planes, the plane \(y = 1 - x \), and the surface \(z = \cos(\pi y/2) \), \(0 \leq x \leq 1 \)

29. The region common to the interiors of the cylinders \(x^2 + y^2 = 1 \) and \(x^2 + z^2 = 1 \), one-eighth of which is shown in the accompanying figure.

30. The region in the first octant bounded by the coordinate planes and the surface \(\sqrt{x^2 + 4z^2} = 16 \)

31. The region in the first octant bounded by the coordinate planes, the plane \(x + y = 4 \), and the cylinder \(x^2 + 4z^2 = 16 \)

32. The region cut from the cylinder \(x^2 + y^2 = 1 \) by the plane \(z = 0 \) and the plane \(x + z = 3 \)

33. The region between the planes \(x + y + 2z = 2 \) and \(2x + 2y + z = 4 \) in the first octant

34. The finite region bounded by the planes \(z = x, x + z = 8, z = y, y = 8 \), and \(z = 0 \).

35. The region cut from the solid elliptical cylinder \(x^2 + 4y^2 \leq 1 \) by the \(xy \)-plane and the plane \(z = x + 2 \)

36. The region bounded in back by the plane \(x = 0 \), on the front and sides by the parabolic cylinder \(x = 1 - y^2 \), on the top by the paraboloid \(z = x^2 + y^2 \), and on the bottom by the \(xy \)-plane

Average Values

In Exercises 37–40, find the average value of \(F(x, y, z) \) over the given region.

37. \(F(x, y, z) = x^2 + 9 \) over the cube in the first octant bounded by the coordinate planes and the planes \(x = 2, y = 2 \), and \(z = 2 \)

38. \(F(x, y, z) = x + y - z \) over the rectangular solid in the first octant bounded by the coordinate planes and the planes \(x = 1, y = 1 \), and \(z = 2 \)

39. \(F(x, y, z) = x^2 + y^2 + z^2 \) over the cube in the first octant bounded by the coordinate planes and the planes \(x = 1, y = 1 \), and \(z = 1 \)

40. \(F(x, y, z) = xyz \) over the cube in the first octant bounded by the coordinate planes and the planes \(x = 2, y = 2 \), and \(z = 2 \)

Changing the Order of Integration

Evaluate the integrals in Exercises 41–44 by changing the order of integration in an appropriate way.

41. \(\int_0^2 \int_0^1 \int_0^{4 \cos(\pi z/2)} 2 \sqrt{x} \, dx \, dy \, dz \)

42. \(\int_0^1 \int_0^1 \int_0^{\ln 2} \pi z^2 e^{\pi x} \, dy \, dx \, dz \)

43. \(\int_0^1 \int_0^{\ln 3} \int_0^{\pi y^2} \pi e^{2x} \sin \pi y^2 \, dx \, dy \, dz \)

44. \(\int_0^2 \int_0^{4 - z} \int_0^{2 \sin 2 \pi x} \frac{2 \pi}{4 - z} \, dy \, dz \, dx \)
Theory and Examples

45. Finding upper limit of iterated integral Solve for a:
\[\int_0^1 \int_0^{4-x^2} \int_0^{4-x^2-y} dz \, dy \, dx = \frac{4}{15}. \]

46. Ellipsoid For what value of c is the volume of the ellipsoid $x^2 + (y/2)^2 + (z/c)^2 = 1$ equal to 8π?

47. Minimizing a triple integral What domain D in space minimizes the value of the integral
\[\iiint_D (4x^2 + 4y^2 + z^2 - 4) \, dV? \]
Give reasons for your answer.

48. Maximizing a triple integral What domain D in space maximizes the value of the integral
\[\iiint_D (1 - x^2 - y^2 - z^2) \, dV? \]
Give reasons for your answer.

COMPUTER EXPLORATIONS

Numerical Evaluations

In Exercises 49–52, use a CAS integration utility to evaluate the triple integral of the given function over the specified solid region.

49. $F(x, y, z) = x^2y^2z$ over the solid cylinder bounded by $x^2 + y^2 = 1$ and the planes $z = 0$ and $z = 1$

50. $F(x, y, z) = |xyz|$ over the solid bounded below by the paraboloid $z = x^2 + y^2$ and above by the plane $z = 1$

51. $F(x, y, z) = \frac{z}{(x^2 + y^2 + z^2)^{3/2}}$ over the solid bounded below by the cone $z = \sqrt{x^2 + y^2}$ and above by the plane $z = 1$

52. $F(x, y, z) = x^4 + y^2 + z^2$ over the solid sphere $x^2 + y^2 + z^2 \leq 1$