Chapter 15: Multiple Integrals

Chapter 15 Additional and Advanced Exercises

Volumes

1. **Sand pile: double and triple integrals** The base of a sand pile covers the region in the xy-plane that is bounded by the parabola \(x^2 + y = 6 \) and the line \(y = x \). The height of the sand above the point \((x, y)\) is \(x^2 \). Express the volume of sand as (a) a double integral, (b) a triple integral. Then (c) find the volume.

2. **Water in a hemispherical bowl** A hemispherical bowl of radius 5 cm is filled with water to within 3 cm of the top. Find the volume of water in the bowl.

3. **Solid cylindrical region between two planes** Find the volume of the portion of the solid cylinder \(x^2 + y^2 \leq 1 \) that lies between the planes \(z = 0 \) and \(x + y + z = 2 \).

4. **Sphere and paraboloid** Find the volume of the region bounded above by the sphere \(x^2 + y^2 + z^2 = 2 \) and below by the paraboloid \(z = x^2 + y^2 \).

5. **Two paraboloids** Find the volume of the region bounded above by the paraboloid \(z = 3 - x^2 - y^2 \) and below by the paraboloid \(z = 2x^2 + 2y^2 \).

6. **Spherical coordinates** Find the volume of the region enclosed by the spherical coordinate surface \(\rho = 2 \sin \phi \) (see accompanying figure).

7. **Hole in sphere** A circular cylindrical hole is bored through a solid sphere, the axis of the hole being a diameter of the sphere. The volume of the remaining solid is

\[
V = 2 \int_0^{2\pi} \int_0^1 \int_0^{\sqrt{4r^2 - z^2}} r \, dr \, dz \, d\theta.
\]

a. Find the radius of the hole and the radius of the sphere.
b. Evaluate the integral.

8. **Sphere and cylinder** Find the volume of material cut from the solid sphere \(r^2 + z^2 \leq 9 \) by the cylinder \(r = 3 \sin \theta \).
9. Two paraboloids Find the volume of the region enclosed by the surfaces \(z = x^2 + y^2 \) and \(z = (x^2 + y^2 + 1)/2 \).

10. Cylinder and surface \(z = xy \) Find the volume of the region in the first octant that lies between the cylinders \(r = 1 \) and \(r = 2 \) and that is bounded below by the \(xy \)-plane and above by the surface \(z = xy \).

Changing the Order of Integration

11. Evaluate the integral

\[
\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \, dx.
\]

(Hint: Use the relation

\[
\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \, dx = \int_a^b e^{-xy} \, dy
\]

to form a double integral and evaluate the integral by changing the order of integration.)

12. a. Polar coordinates Show, by changing to polar coordinates, that

\[
\int_0^{a \sin \beta} \int_{y \cos \beta}^{\sqrt{a^2 - y^2}} \ln (x^2 + y^2) \, dx \, dy = a^2 \beta \left(\ln a - \frac{1}{2} \right),
\]

where \(a > 0 \) and \(0 < \beta < \pi/2 \).

b. Rewrite the Cartesian integral with the order of integration reversed.

13. Reducing a double to a single integral By changing the order of integration, show that the following double integral can be reduced to a single integral:

\[
\int_0^x \int_0^{u \sin \beta} f(t) \, dt \, du = \int_0^x (x - t) e^{u(x-t)} f(t) \, dt.
\]

Similarly, it can be shown that

\[
\int_0^x \int_0^{u \cos \beta} f(t) \, dt \, du = \int_0^x (x - t)^2 \frac{1}{2} e^{u(x-t)} f(t) \, dt.
\]

14. Transforming a double integral to obtain constant limits Sometimes a multiple integral with variable limits can be changed into one with constant limits. By changing the order of integration, show that

\[
\int_0^1 f(x) \left(\int_0^x g(x-y) f(y) \, dy \right) \, dx
\]

\[
= \int_0^1 f(y) \left(\int_y^1 g(x-y) f(x) \, dx \right) \, dy
\]

\[
= \frac{1}{2} \int_0^1 \int_0^1 g(|x - y|) f(x) f(y) \, dx \, dy.
\]

Masses and Moments

15. Minimizing polar inertia A thin plate of constant density is to occupy the trapezoidal region in the first quadrant of the \(xy \)-plane having vertices \((0, 0), (a, 0), \) and \((a, 1/a)\). What value of \(a \) will minimize the plate’s polar moment of inertia about the origin?

16. Polar inertia of triangular plate Find the polar moment of inertia about the origin of a thin triangular plate of constant density \(\delta = 3 \) bounded by the \(y \)-axis and the lines \(y = 2x \) and \(y = 4 \) in the \(xy \)-plane.

17. Mass and polar inertia of a counterweight The counterweight of a flywheel of constant density 1 has the form of the smaller segment cut from a circle of radius \(a \) by a chord at a distance \(b \) from the center \((b < a)\). Find the mass of the counterweight and its polar moment of inertia about the center of the wheel.

18. Centroid of boomerang Find the centroid of the boomerang-shaped region between the parabolas \(y^2 = -4(x-1) \) and \(y^2 = 2x \) in the \(xy \)-plane.

Theory and Applications

19. Evaluate

\[
\int_0^a \int_0^b e^{\max(bx^2, ay^2)} \, dy \, dx,
\]

where \(a \) and \(b \) are positive numbers and

\[
\max (bx^2, ay^2) = \begin{cases}
 bx^2 & \text{if } bx^2 \geq ay^2 \\
 ay^2 & \text{if } bx^2 < ay^2.
\end{cases}
\]

20. Show that

\[
\iint \frac{\partial^2 F(x,y)}{dx dy} \, dx \, dy
\]

over the rectangle \(x_0 \leq x \leq x_1, y_0 \leq y \leq y_1 \), is

\[
F(x_1, y_1) - F(x_0, y_1) - F(x_1, y_0) + F(x_0, y_0).
\]

21. Suppose that \(f(x, y) \) can be written as a product \(f(x, y) = F(x)G(y) \) of a function of \(x \) and a function of \(y \). Then the integral of \(f \) over the rectangle \(R: a \leq x \leq b, c \leq y \leq d \) can be evaluated as a product as well, by the formula

\[
\iint_R f(x, y) \, dA = \left(\int_a^b F(x) \, dx \right) \left(\int_c^d G(y) \, dy \right).
\]
1142 Chapter 15: Multiple Integrals

22. Let \(D_a f \) denote the derivative of \(f(x, y) = (x^2 + y^2)/2 \) in the direction of the unit vector \(\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} \).

a. Finding average value Find the average value of \(D_a f \) over the triangular region cut from the first quadrant by the line \(x + y = 1 \).

b. Average value and centroid Show in general that the average value of \(D_a f \) over a region in the \(xy \)-plane is the value of \(D_a f \) at the centroid of the region.

23. The value of \(\Gamma(1/2) \) The gamma function,

\[
\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, dt,
\]

extends the factorial function from the nonnegative integers to other real values. Of particular interest in the theory of differential equations is the number

\[
\Gamma\left(\frac{1}{2}\right) = \int_0^\infty t^{(1/2)-1} e^{-t} \, dt = \int_0^\infty \frac{e^{-t}}{\sqrt{t}} \, dt.
\]

24. Total electrical charge over circular plate The electrical charge distribution on a circular plate of radius \(R \) meters is \(\sigma(r, \theta) = kr(1 - \sin \theta) \) coulomb/m\(^2\) (\(k \) a constant). Integrate \(\sigma \) over the plate to find the total charge \(Q \).

25. A parabolic rain gauge A bowl is in the shape of the graph of \(z = x^2 + y^2 \) from \(z = 0 \) to \(z = 10 \) in. You plan to calibrate the bowl to make it into a rain gauge. What height in the bowl would correspond to 1 in. of rain? 3 in. of rain?

26. Water in a satellite dish A parabolic satellite dish is 2 m wide and 1/2 m deep. Its axis of symmetry is tilted 30 degrees from the vertical.

a. Set up, but do not evaluate, a triple integral in rectangular coordinates that gives the amount of water the satellite dish will hold. (Hint: Put your coordinate system so that the satellite dish is in “standard position” and the plane of the water level is slanted.) (Caution: The limits of integration are not “nice.”)

b. What would be the smallest tilt of the satellite dish so that it holds no water?

27. An infinite half-cylinder Let \(D \) be the interior of the infinite right circular half-cylinder of radius 1 with its single-end face suspended 1 unit above the origin and its axis the ray from \((0, 0, 1)\) to \((1, 1, 1)\). Use cylindrical coordinates to evaluate

\[
\iiint_D z(r^2 + z^2)^{-5/2} \, dV.
\]

28. Hypervolume We have learned that \(\int_a^b 1 \, dx \) is the length of the interval \([a, b]\) on the number line (one-dimensional space), \(\iint_R 1 \, dA \) is the area of region \(R \) in the \(xy \)-plane (two-dimensional space), and \(\iiint_D 1 \, dV \) is the volume of the region \(D \) in three-dimensional space (\(xyz \)-space). We could continue: If \(Q \) is a region in 4-space (\(xyzw \)-space), then \(\iiint_Q 1 \, dV \) is the “hypervolume” of \(Q \). Use your generalizing abilities and a Cartesian coordinate system of 4-space to find the hypervolume inside the unit 4-sphere \(x^2 + y^2 + z^2 + w^2 = 1 \).